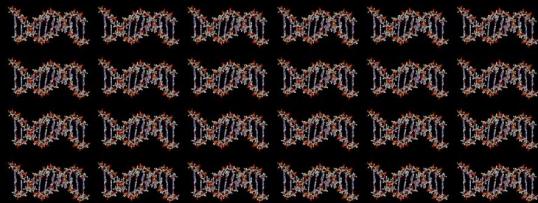


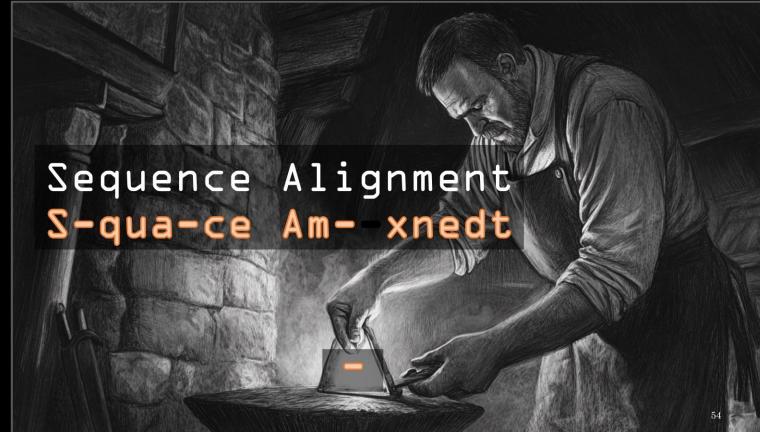
Molecular sequence representations

- 67 -

Time for some actual computer science

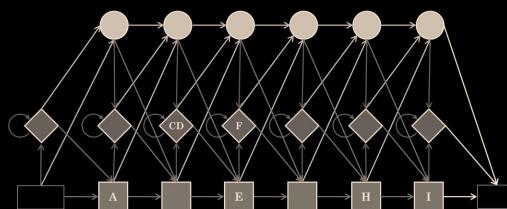


Module 1



Sequence Alignment

Hidden Markov Models and Gene Prediction



Optimal Sequence Alignment

Comparing Highly Similar Sequences: Suffix Trees and the Burrows-Wheeler Transform

Homology and Sequence Alignment

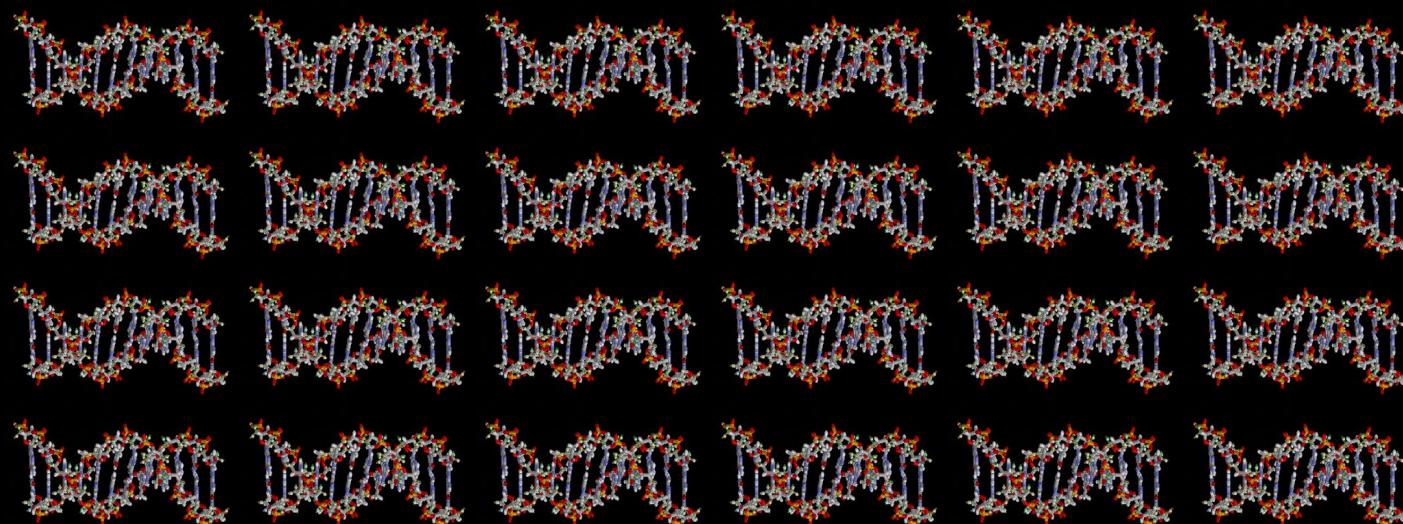
Module Summary

- There are many ways to represent sequences...there is no universal best choice
- Point, insertion and deletion mutations make the alignment problem non-trivial (with exponential complexity!) We need efficient algorithms and appropriate statistics
- How can we efficiently do:
 - Fast database searches?
 - VERY fast database searches?
 - Multiple sequence alignment?

Molecular sequence representations

- or -

Time for some actual computer science



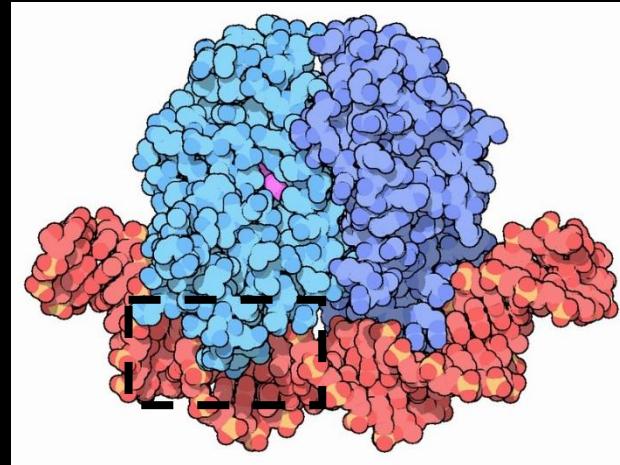
Overview

1. Goals of sequence representation
2. Text string-based sequence representations
3. Advanced sequence representations:
probabilities, data structures, models
4. Structural representations

Comparison / classification / analysis

Goals of representation

(1) Identify functional patterns
(e.g., sequence *motifs* or functional *domains*) in DNA or protein sequences



Catabolite activator protein (CAP or CRP) bound to DNA

atatgcctga **cgaggat**tcacactt **gtaa**gttt tcaactacg
t
attcagtaca **aaacgt**gtatcaacccctcaatt ttcccttgc
t
tcgcttgc **agctgt**gacaagctccgcaa **at cgt**gacaat
a
aaaaacattt **tagagt**gatatgtataacatta tggcgttt
t

Experimentially validated CAP binding sites

blahblahblahblahblahblahblahblahblahblah
h
blahblahblahblahblahblahblahblahblahblahblah
h
blahblahblahblahblahblahblahblahblahblahblah
h
blahblahblahblahblahblahblahblahblahblahblah
h

CAP-lacking sequences

What's the difference?

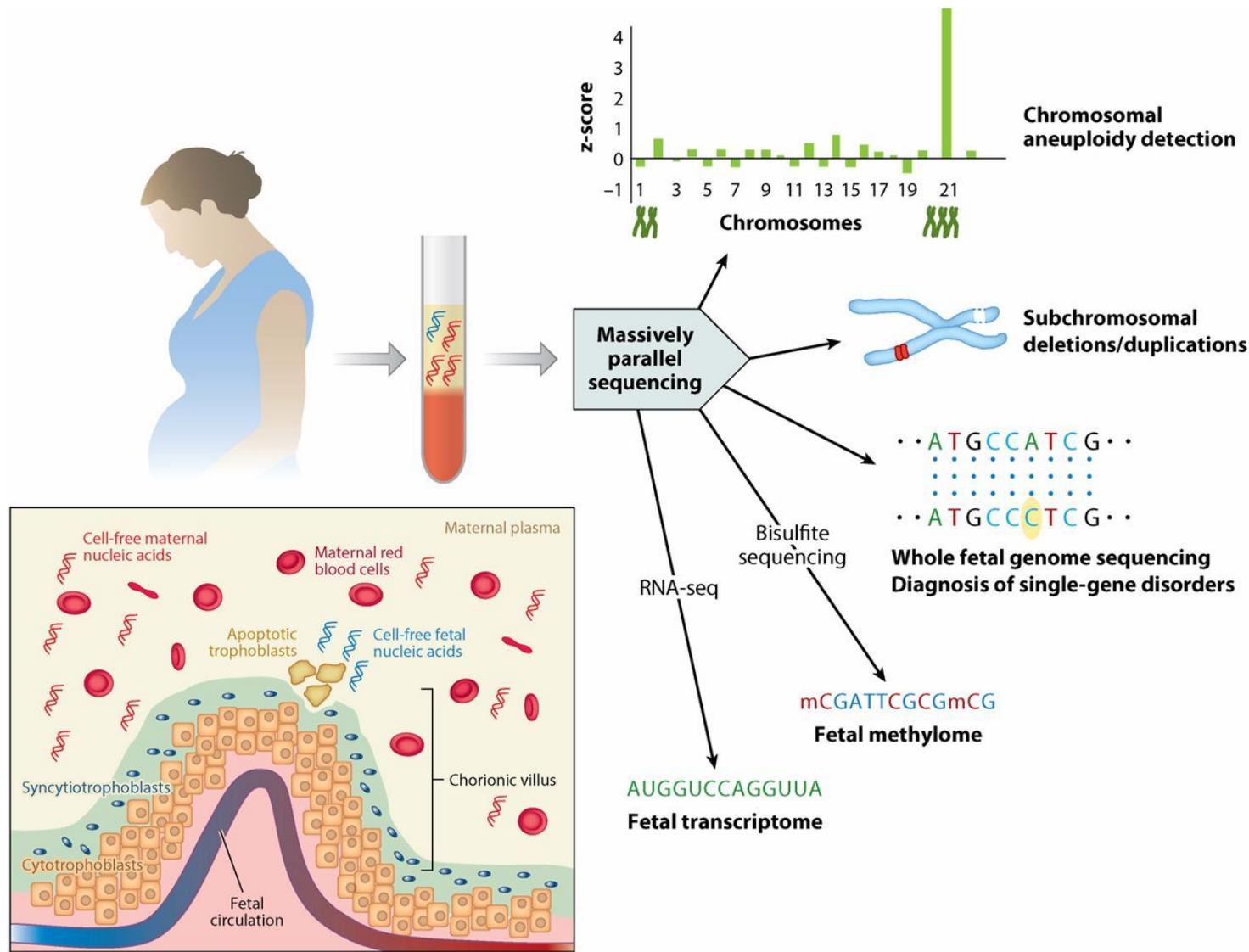
Goals of representation

Distinguish phenotypes based on sequence or structural variation
e.g., huntingtin gene, responsible for Huntington's disease

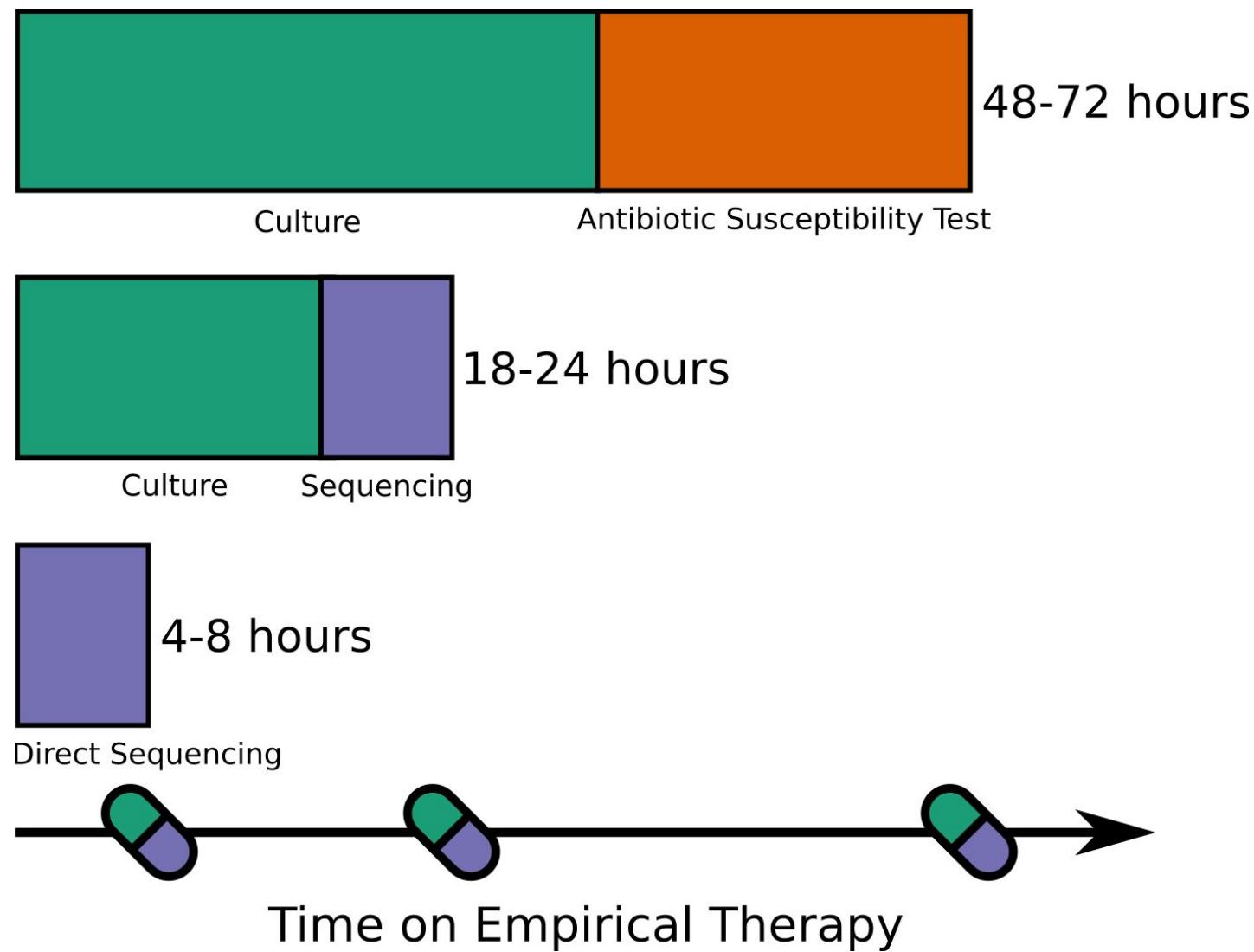
(About 10,000 more nucleotides in the gene)

# of CAG repeats	Effect
< 27	Healthy
27-35	Intermediate
36-39	Disease (reduced penetrance)
> 39	Full disease effects

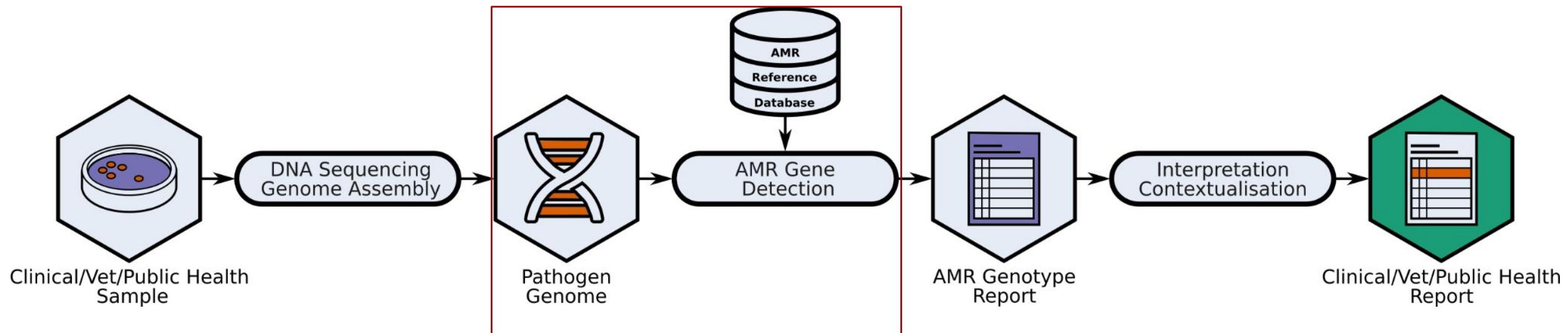
Non-invasive Pre-Natal Testing of Cell-Free DNA



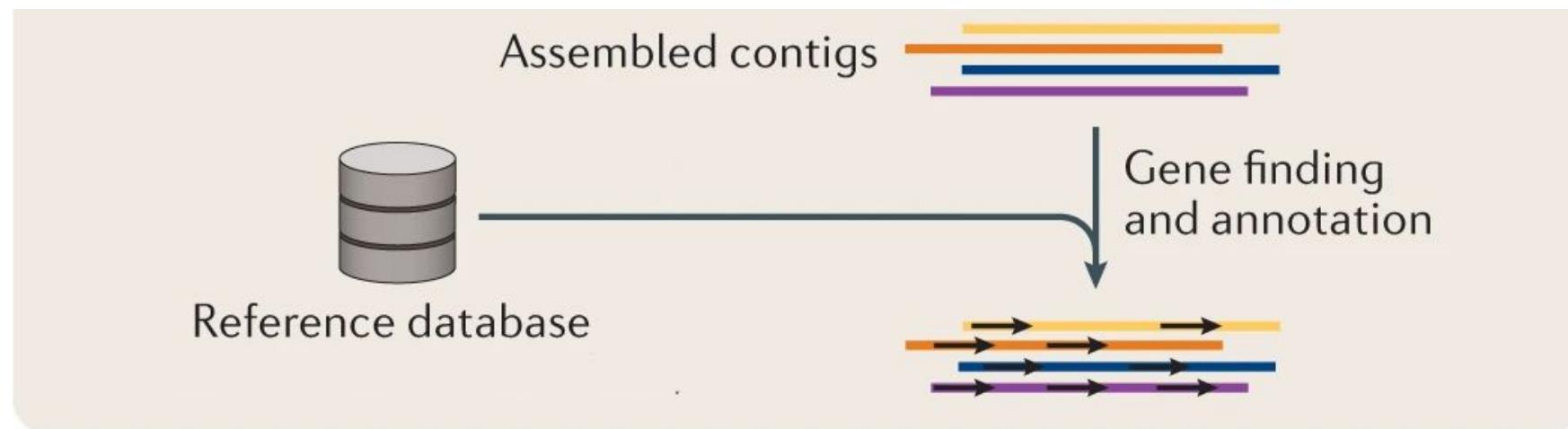
Using genomics for rapid clinical diagnostics



Identifying AMR genes requires comparing sequences



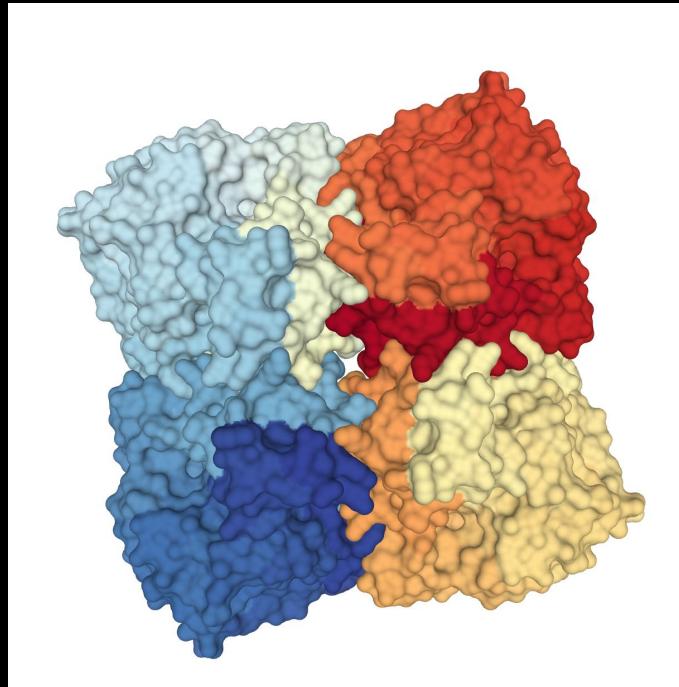
Identifying AMR genes requires comparing sequences



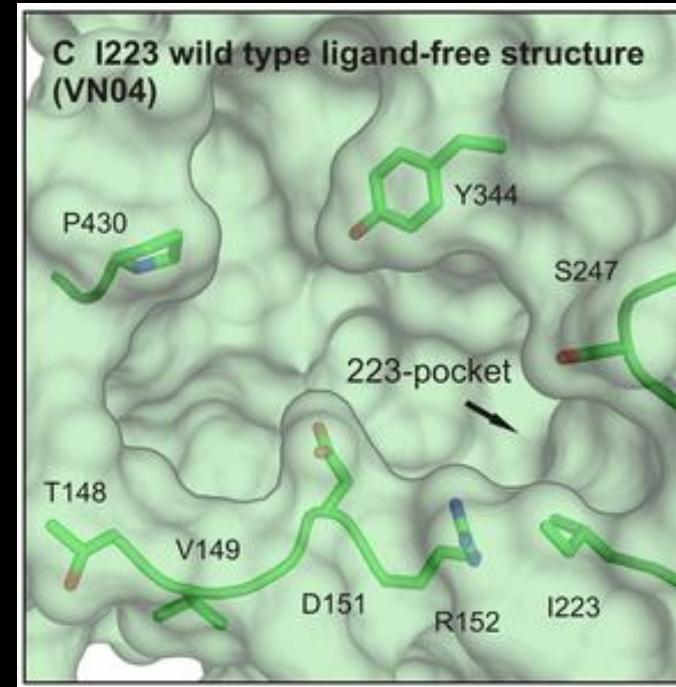
Goals of representation

Identify important changes at the sequence and structural level
e.g. oseltamivir resistance in influenza H1N1 Neuraminidase

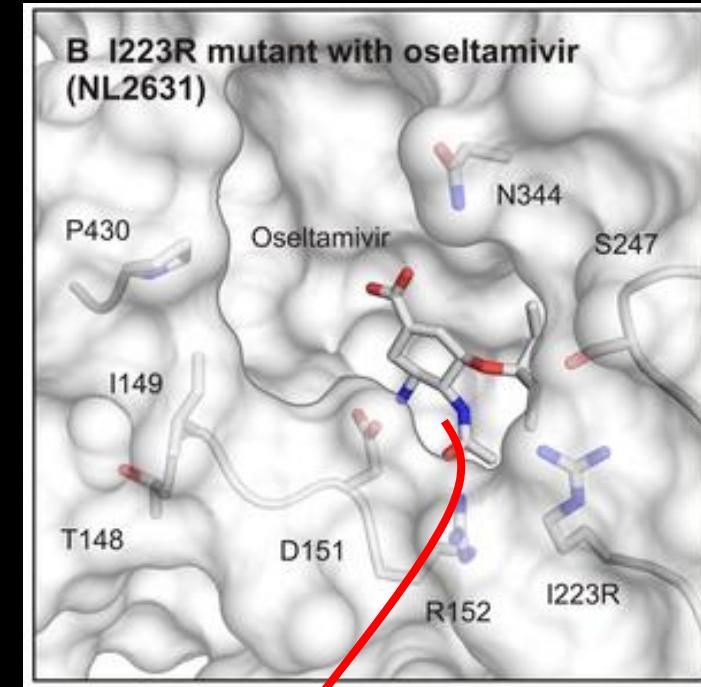
Neuraminidase structure



Normal structure



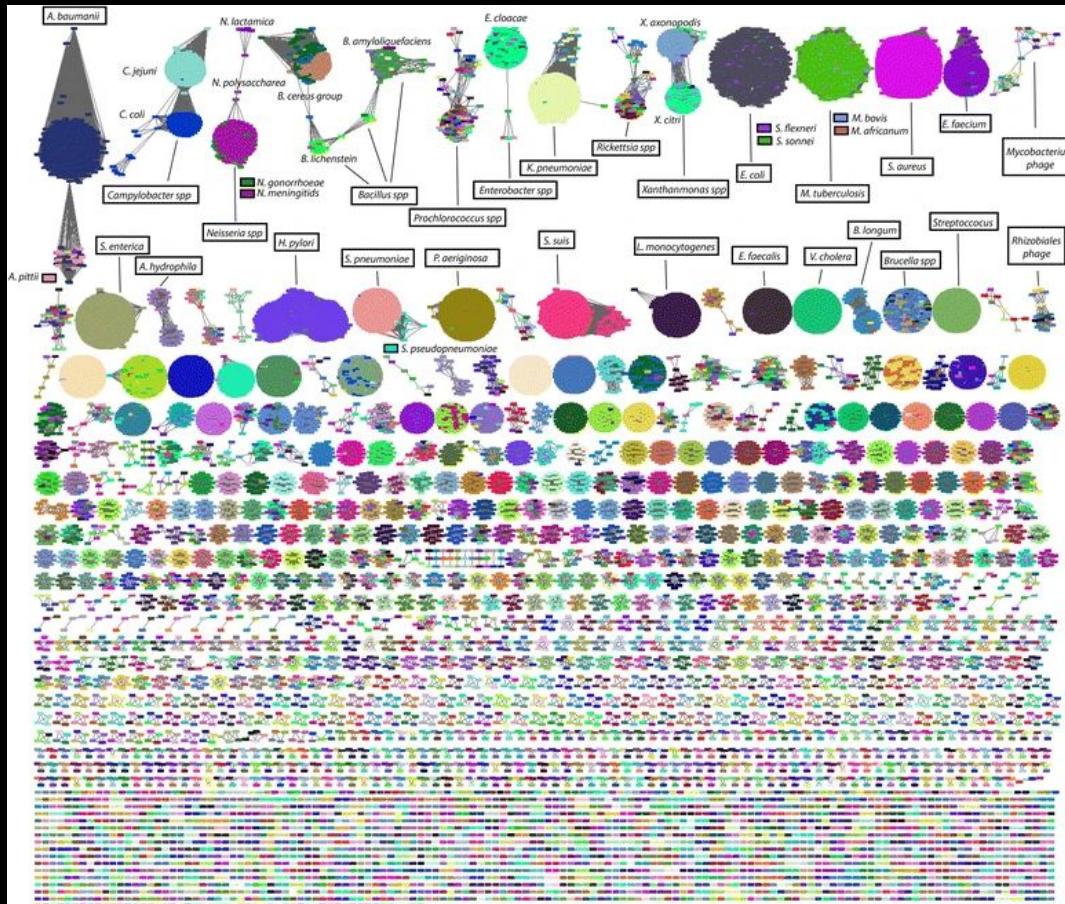
Mutated version



Doesn't fit!

Goals of representation

Compute global dissimilarity between sequences in large datasets

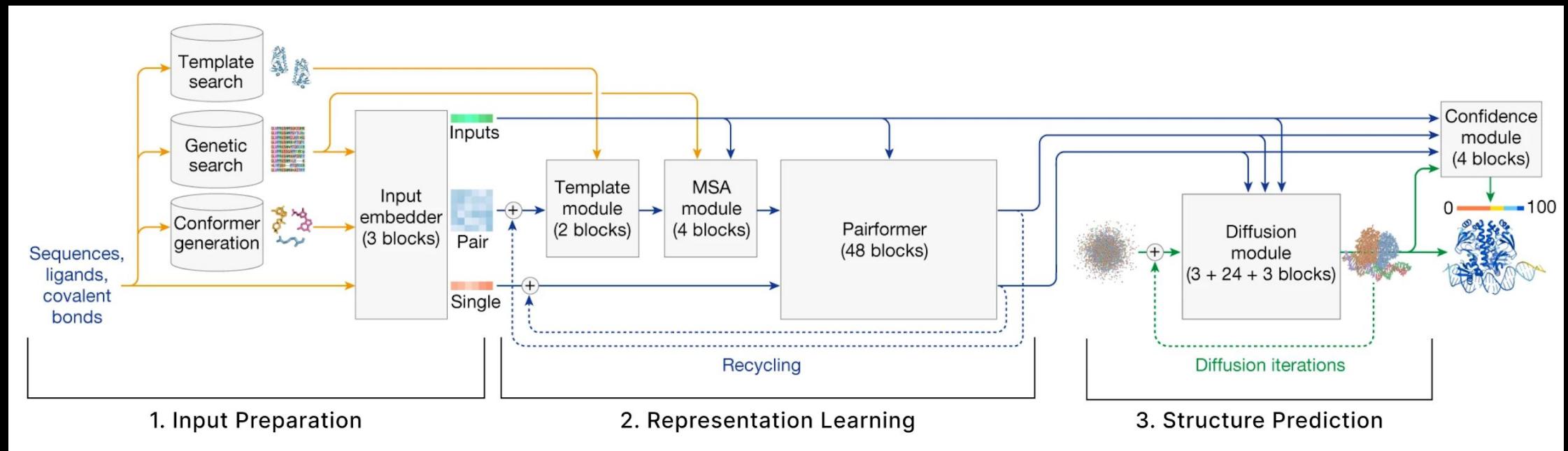


>54,000 genomes
clustered using MinHash
(MASH) distance

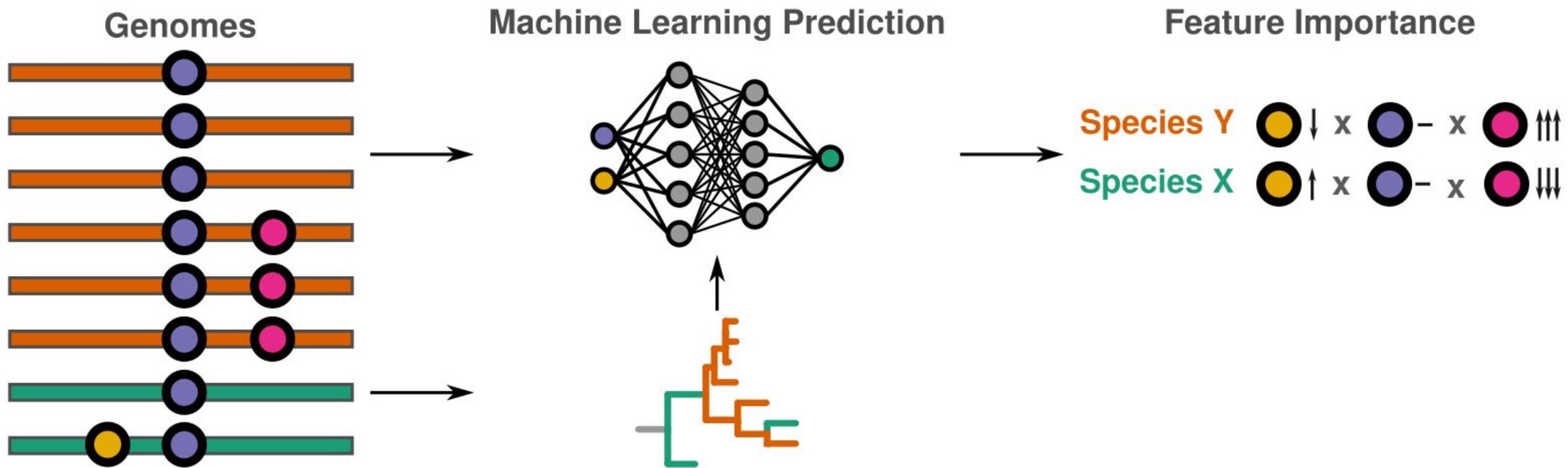
Goals of representation

Find best **encoding** for machine-learning classification

Sequence / structure encoding for AlphaFold



Predicting ability to infect certain species from genome





Sequence representations

Biological Sequences

Primary structure is just the sequence

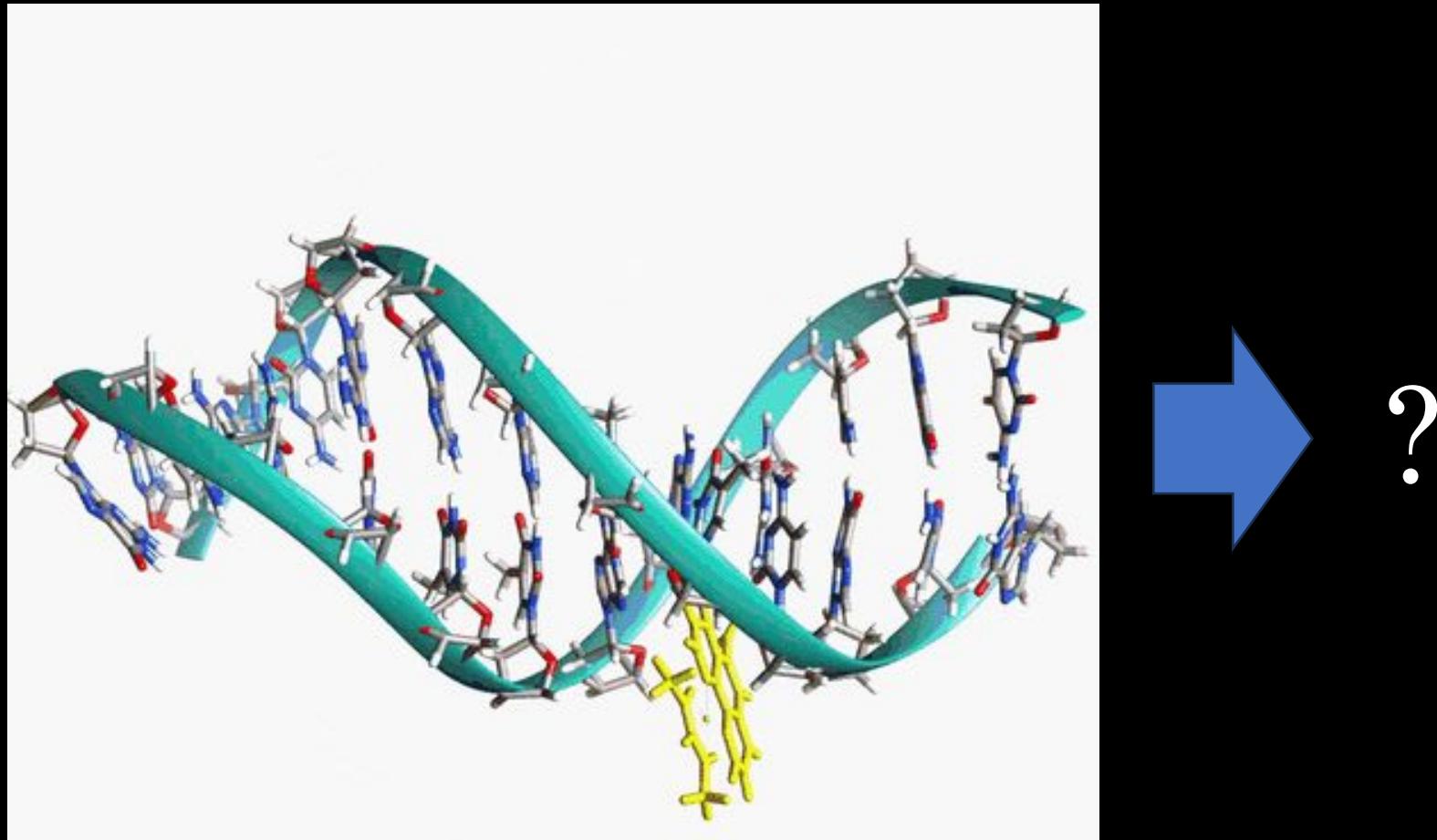
Higher levels of “structure” describe the three-dimensional features of molecules

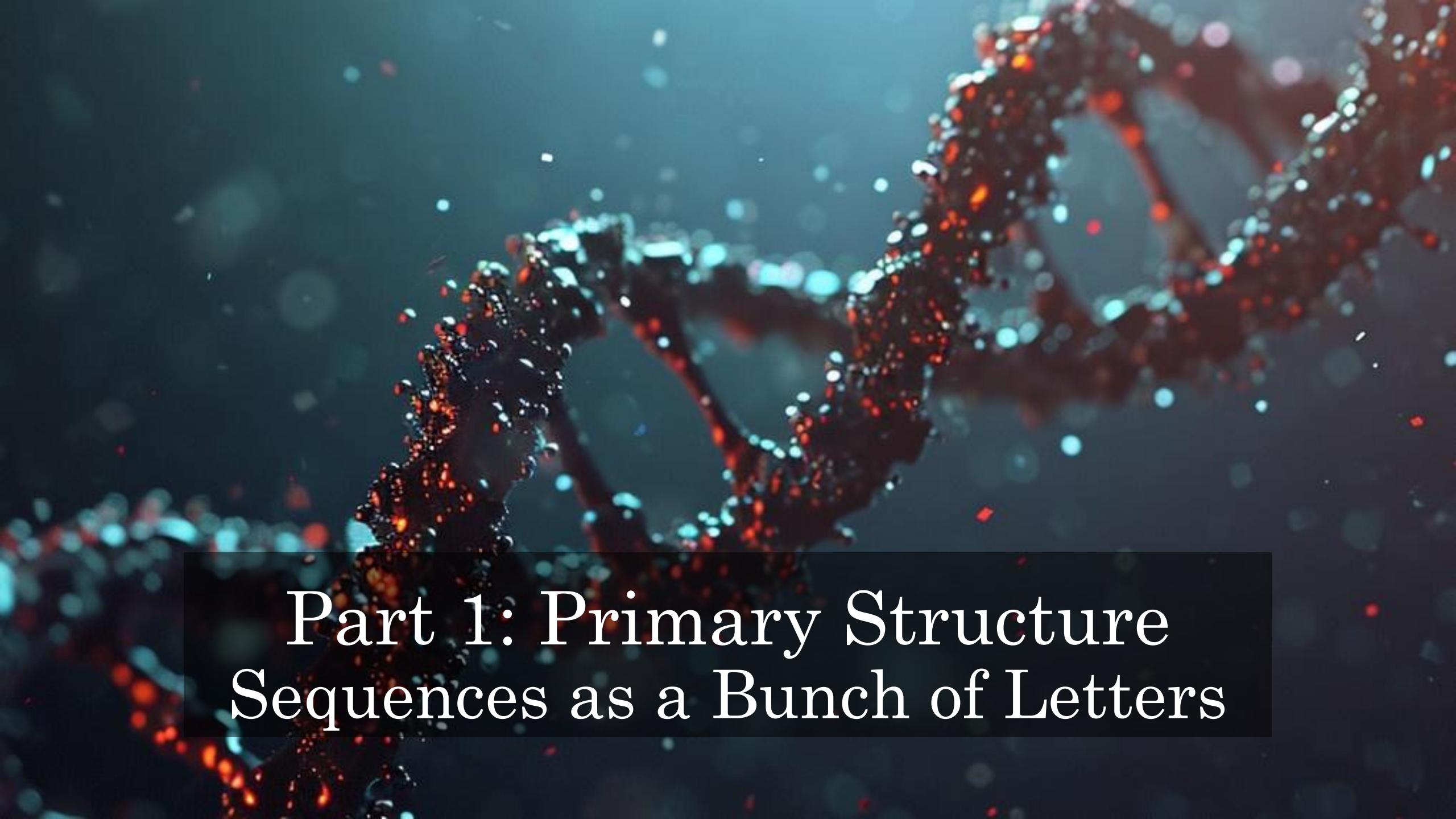
DNA ...ACCGAATTACGATACATG...

Protein ...MLQELIVNEW...

Sequence Representations of DNA

Convert linear, double-stranded DNA into representation(s) that comprise a *feature set*





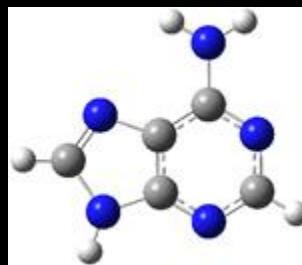
Part 1: Primary Structure Sequences as a Bunch of Letters

The most common representation is (as you have already seen) a **STRING** representation with an alphabet of four letters

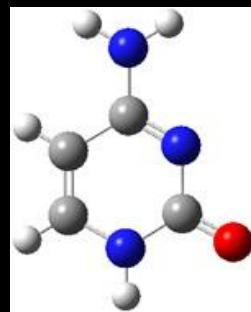
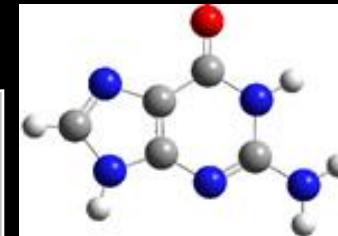
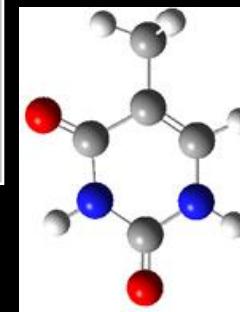
$$\{A, C, G, T\}$$

But there is a lot more we can do.

Meet the nucleotides!

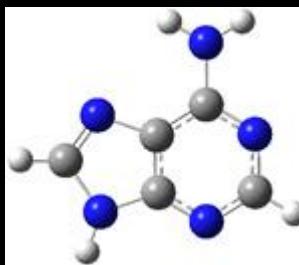


A	G
C	T

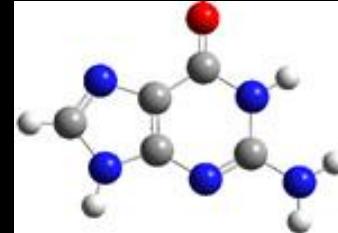
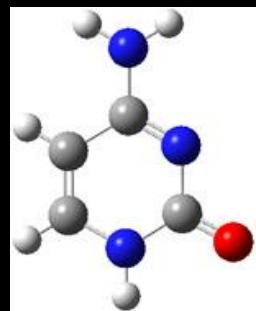
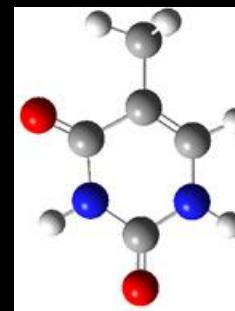
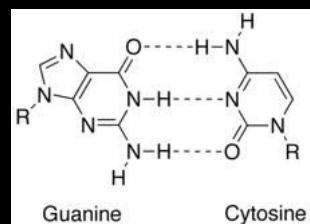


Degenerate characters

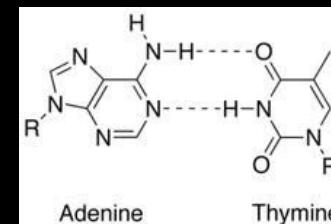
Every pair of nucleotides has something in common



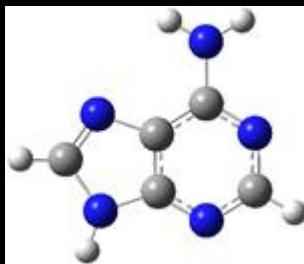
A	G
C	T



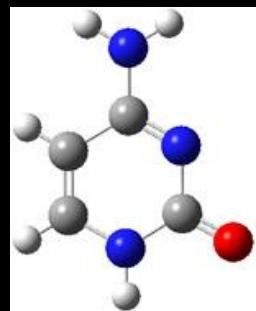
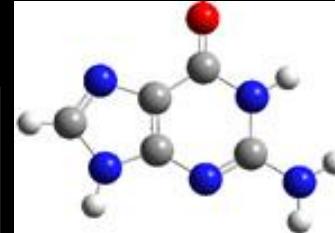
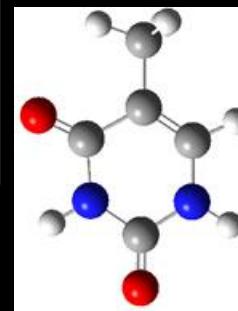
STRONG vs. WEAK base pairing



Degenerate characters

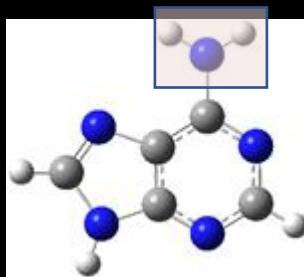


A	G
C	T

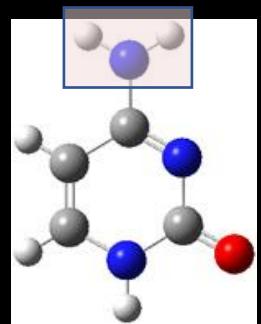
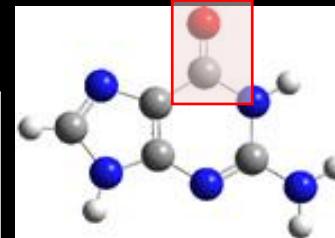
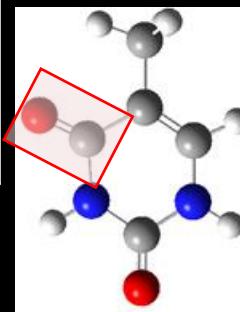


PURINE (large) vs. PYRIMIDINE (small)

Degenerate characters



A	G
C	T



AMINO vs. KETO functional groups
(rarely useful)

IUPAC nomenclature – All possible sets

A	C	G	T	Code	\neg Code
				A	B
				C	D
				G	H
				T	V
				M	K
				R	Y
				W	S
				N	X

Example: recoding

Transitions: replace one nucleotide with the other of the same size

Transversions: replace one nucleotide with one of a different size

$(C \leftrightarrow T)$ and $(A \leftrightarrow G)$ generally more frequent $\{A, G\} \leftrightarrow \{C, T\}$

R/Y recoding hides transitions (since $C, T \rightarrow Y$ and $A, G \rightarrow R$)

Good for **dissimilar** sequences as it reduces the number of differences

R/Y recoding

GTCTAAAAAGTTCAAGGTT
AACAAAGAAATGAAGGTAT

Original gene sequences
(distance = 8/20)

RYYYRRRRRRYYRRRRYY
R_YR_{RRRRR}R_YR_{RRR}R_YR_Y

Recoded gene sequences
(distance = 5/20)

Highlights the **rarer** (on average) changes

Word frequencies: k -mers

Decompose a sequence into a set of words of a given length
 k -mers: the collection of words of a given length k

Nucleotides ($k=1$): {A,C,G,T}

Dinucleotides ($k=2$): {AA,AC,...,TT}

Trinucleotides ($k=3$): {AAA,AAC,...,TTT}

etc...

$$N(k)=4^k$$

Sequence composition ($k=1$)

Most common: (G+C) content

A**CCGGCGC**TTA**GCA****GG**AAGA
T**GGCCGCG**AAT**CGT****CC**TTCT

12 G-C pairs, 8 A-T pairs, so (G+C)% = 60%

Total number of k -mers in a sequence of length $l = l - k + 1$

$k = 1$	$k = 2$	$k = 3$
A 6/20 = 0.30	AA 1/19 = 0.053	AAA 0/18 = 0.00
C 0.25	AC 0.053	ACC 1/18 = 0.056
G 0.35
T 0.10	GC 0.158	TTT 0

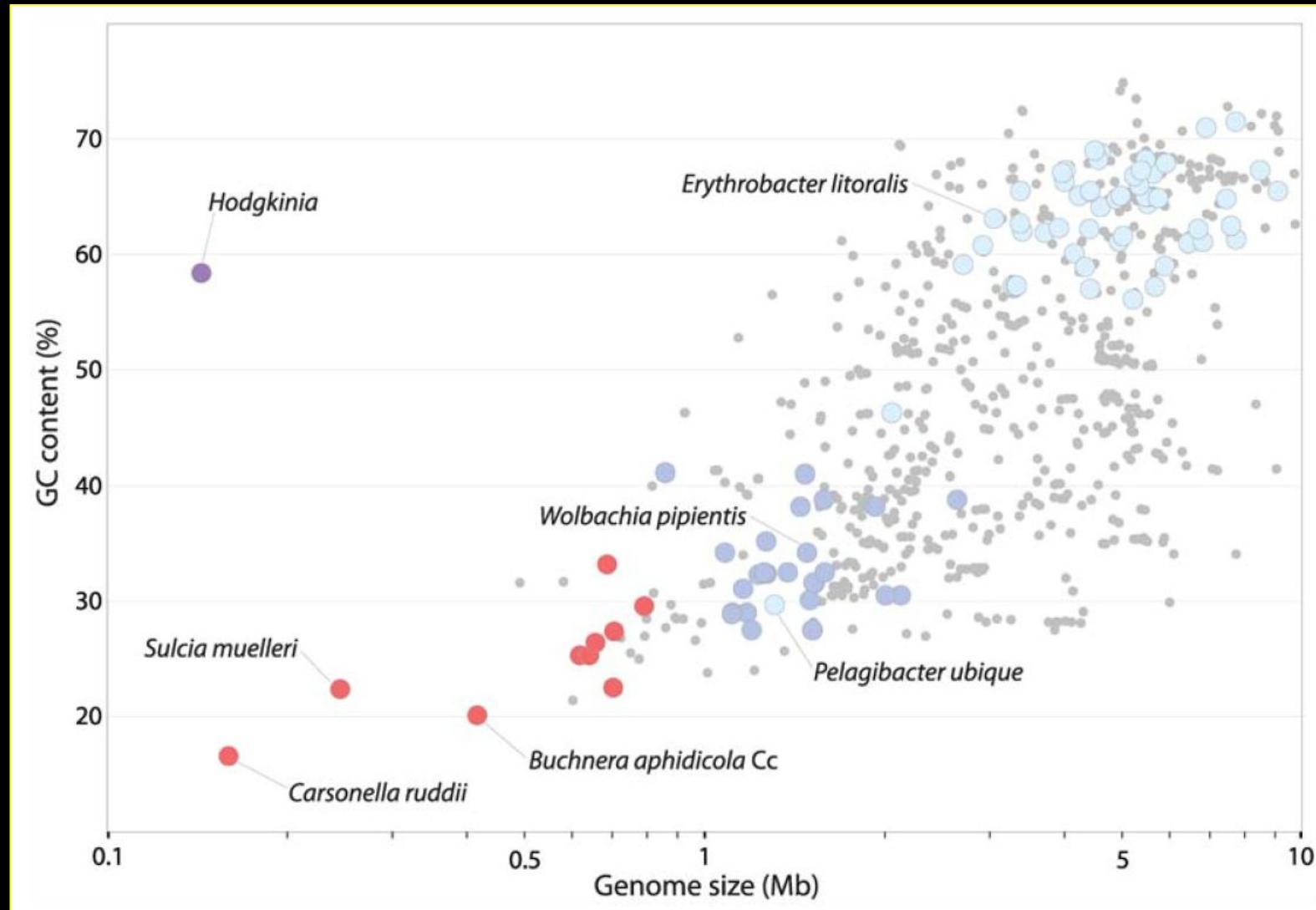
Sequence composition ($k>1$)

k -mers are usually an *overlapping representation*

The sequence ACCGGC is shown in yellow on a black background. Overlaping k-mers are highlighted by red dashed boxes. The sequence is composed of overlapping 2-mers: AC, CC, CG, GG, and GC.

AC	1
CC	1
CG	1
GG	1
GC	1

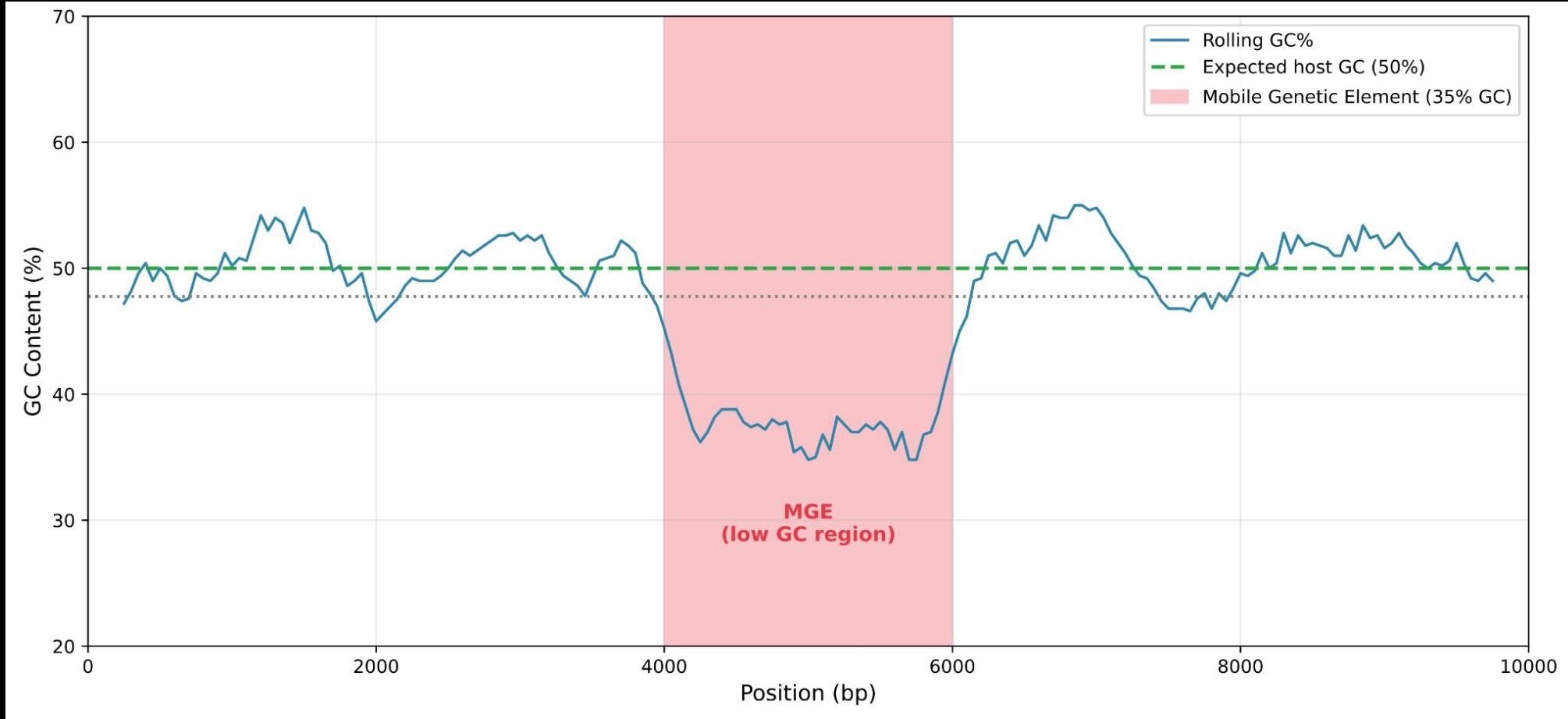
G+C content of bacterial genomes



G+C content varies *within* genomes



Mobile genetic elements can (sometimes) be found using GC%



k-mer variants: Gap spectra

Like *k*-mers, but include internal wildcards

Length = k
of ‘literals’ = L

$k=4, L=2: \{ \text{ANNA}, \text{ANN}C, \dots, \text{TNN}T \}$

Can model higher-order relationships without exhaustive enumeration

Can also tailor literal / wildcard combinations to specific expected patterns

k-mer variants: Degeneracy

Length k

Any IUPAC character (except X) can be used at any position

$k=2$: { AA, AB, AC, AD, AG, ..., VV }

15 letters in IUPAC alphabet, therefore $N(k) = 15^k$

All possible degenerate characters of length 1 to (say) 10

$$\{A, B, C, \dots, V\}$$
$$\{AA, AB, \dots, VV\}$$

...

$$\{AAAAAAAAAA, AAAAAAAAAC, \dots, VVVVVVVVVV\}$$

So...

$$15^1 + 15^2 + 15^3 + 15^4 + 15^5 + 15^6 + 15^7 + 15^8 + 15^9 + 15^{10}$$

$$\cong 5.8 \times 10^{11}$$

Hmmm.

This is a problem we will return to

Tokenization: Escaping the tyranny of fixed length

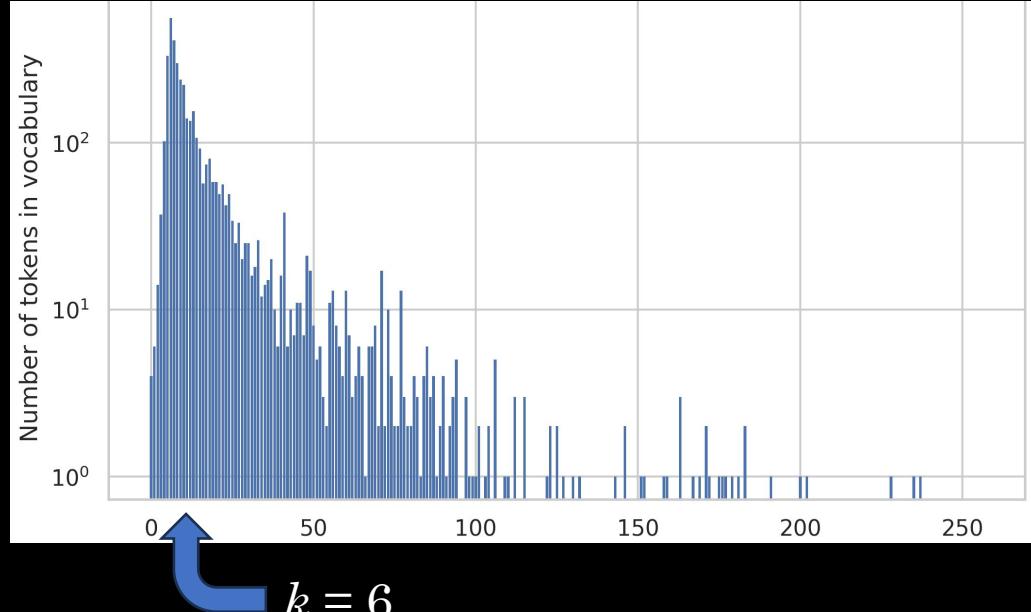
- Why should we rely on a **fixed k** ?
- **Tokenization** builds variable-length representations based on abundance in a given training set
- Frequently used in transformers and other “deep learning” architectures.

Tokenization

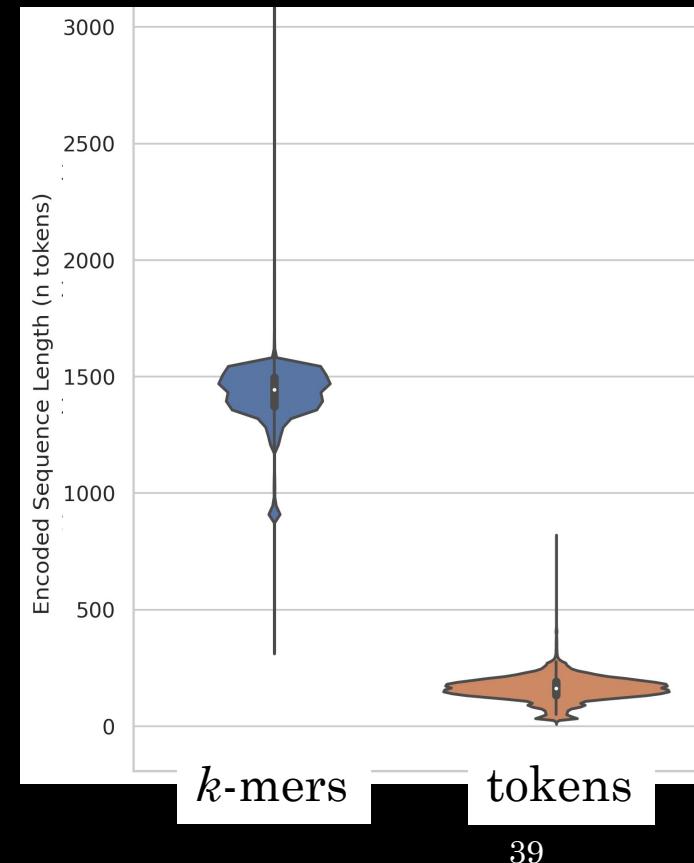
Example: complete 6-mer decomposition - $4^6 k\text{-mers} = 4096$
16S ribosomal RNA gene from bacteria (~ 1500 bp in length)

What if we try tokenization?

Much wider range of features

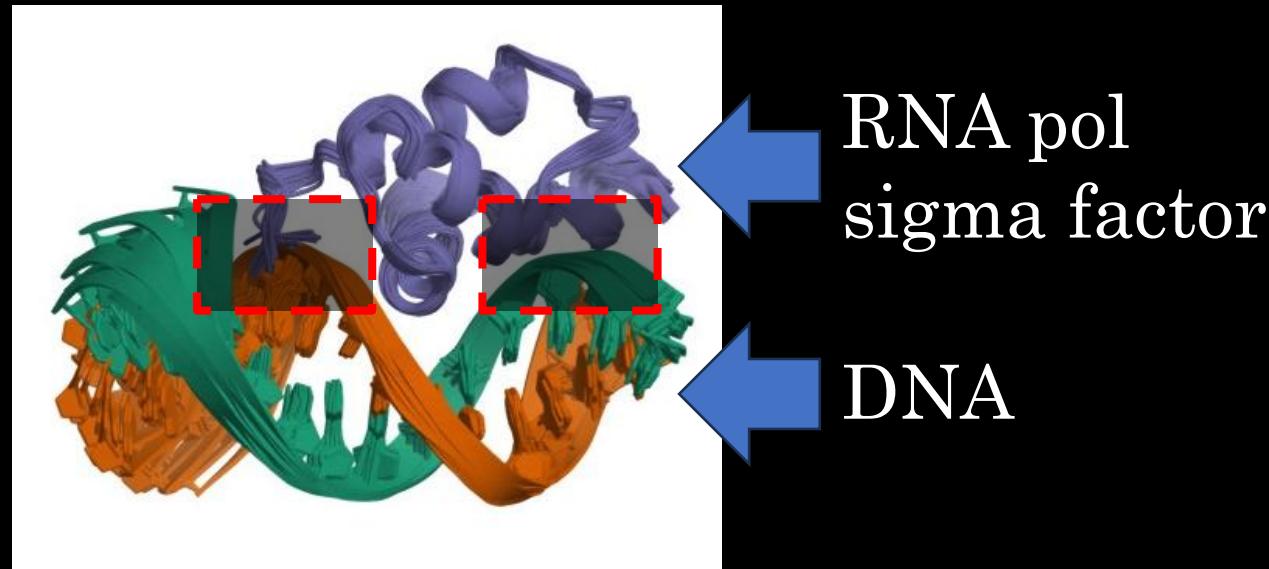


Sequence representations are more compact



Advantages of Word-Based Representations

- **SPEED:** Instead of computationally demanding sequence alignment (coming soon), k -mer and token counts can be placed in a lookup table that can be rapidly searched
- **CUSTOMIZATION:** You can do an exhaustive count of all words of a given k , but you can also tailor the set of representations based on knowledge of the problem



Disadvantages of Word-Based Representations

- **LOSS OF CONTEXT**: You get a compositional summary, but you lose all information about which patterns are close to each other in the sequence.

- **REDUNDANCY** among overlapping words – can be inefficient and introduce big correlations in your data
- **NOVEL DATA** can struggle to generalise to new data with very different word distributions (e.g., a new taxa!)

Beyond Words

or, “what can we do that’s smarter than k-mers?”

Randomly sampling k -mers

- The idea: k -mers are great, but there sure are a lot of them.
 - If k -mers are too short, we can lose key information that differentiate genomes
 - If k -mers are too long, there will be an overwhelming number of them and many will be unique
- We can instead define an “appropriate” k and sample randomly from the resulting k -mers

{ AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT }

minHash

- Problems with random k -mer sampling:
 - Potential correlation among sampled k -mers
 - Are you always going to choose the same k -mers? Will they always make sense?
- Hashing: a potential solution
 - Use a hash function to map k -mers to some value
 - Hashing is deterministic and can map very similar k -mers to very different values

AAAAAA \rightarrow 583250

AAAAAAAT \rightarrow 385325

Sketching

- Compute the set of k -mers

AAAAAAAGGGGG

AAAAAAAGGGGAC

AAAAAAAGGGGAG

AAAAAAAGGGGAT

...

Sketching

- Apply a hash function that changes their order

AAAAAAA
AAAAAAAAC
AAAAAAAAG
AAAAAAAAT
...

h
→

147180
287070
295379
338908
354312
385325
572124
583250
...

Sketching

- Take the smallest hash function values (the *minHash*)

AAAAAAA
AAAAAAAAC
AAAAAAAAG
AAAAAAAAT
...

h
→

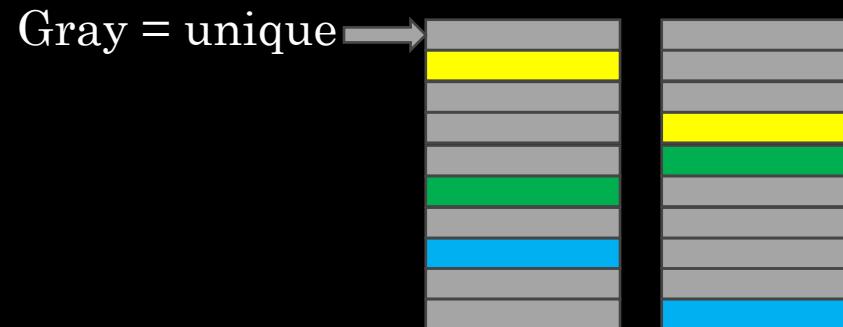
147180
287070
295379
338908
354312
385325
572124
583250

...

- This is the new sequence representation! It is a random and representative sample of the original sequence

Similarity Calculation

- Compare the minHashes of two genomes, and determine their Jaccard similarity index $J(A, B)$



$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} \approx \frac{|S(A \cup B) \cap S(A) \cap S(B)|}{|S(A \cup B)|}$$

True distance
(all k-mers / hashed values)

↑
Jaccard index
(distance based on sketches)

Similarity Calculation

- Compare the minHashes of two genomes, and determine their Jaccard similarity index $J(A, B)$

Intersection of both hashed sets: 3 elements

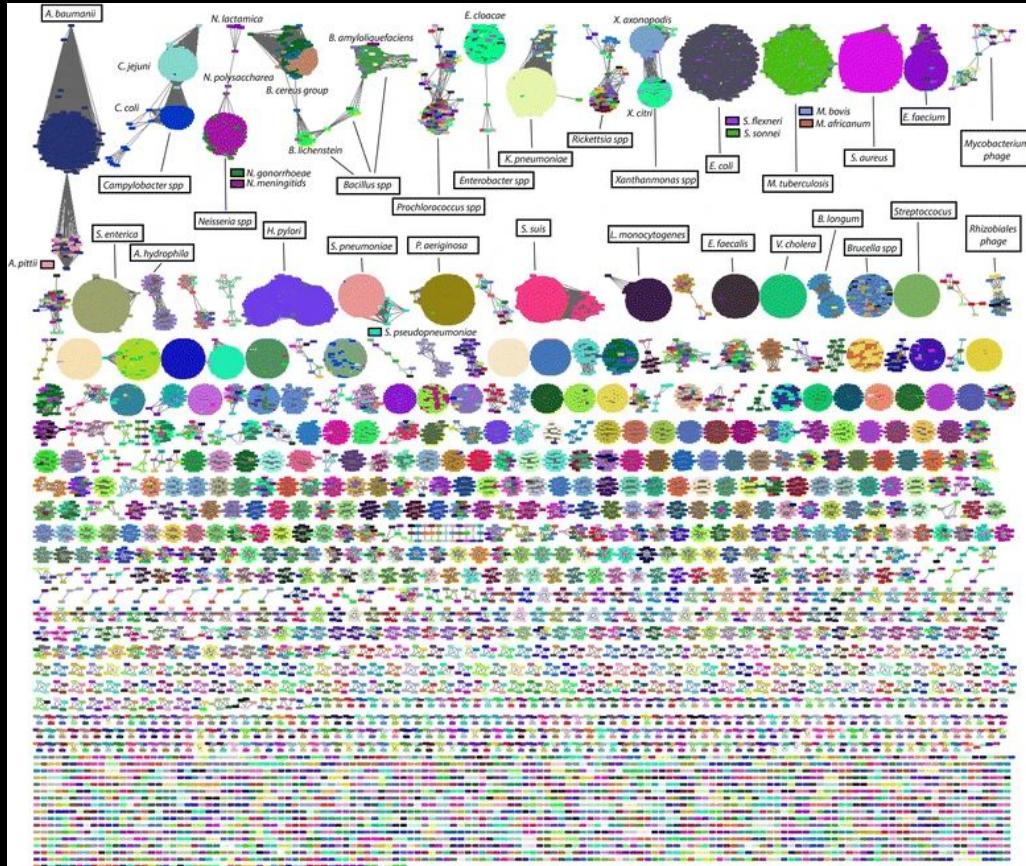
$$\frac{|S(A \cup B) \cap S(A) \cap S(B)|}{|S(A \cup B)|}$$

Total number of unique values in both hashes = 17

Jaccard index = $3/17 = 0.176$ (not especially similar)

Mash Distance

Jaccard index



$$D = -\frac{1}{k} \ln \frac{2j}{1+j}$$

k-mer length

Why is it non-linear?

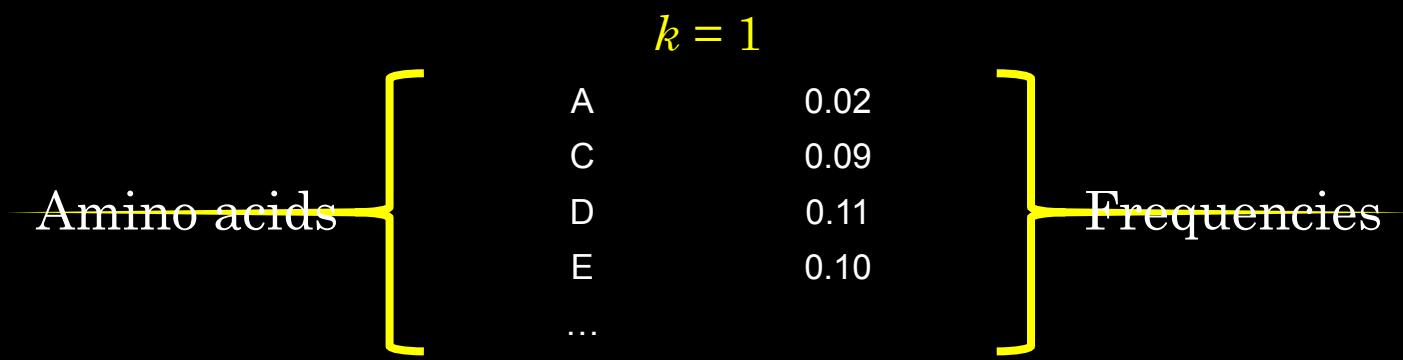
Because distances
between genomes do not
increase linearly with
number of mutations!

DNA2Vec

- Associations among DNA words based on neighbourhood similarity
 1. Do a k -mer decomposition of the sequence
 2. Each k -mer **Z** has a neighbourhood of adjacent k -mers
 3. Train a machine-learning classifier to predict the adjacent k -mers, given **Z**
- More detail coming in classification module

Protein sequences: amino acid k-mers

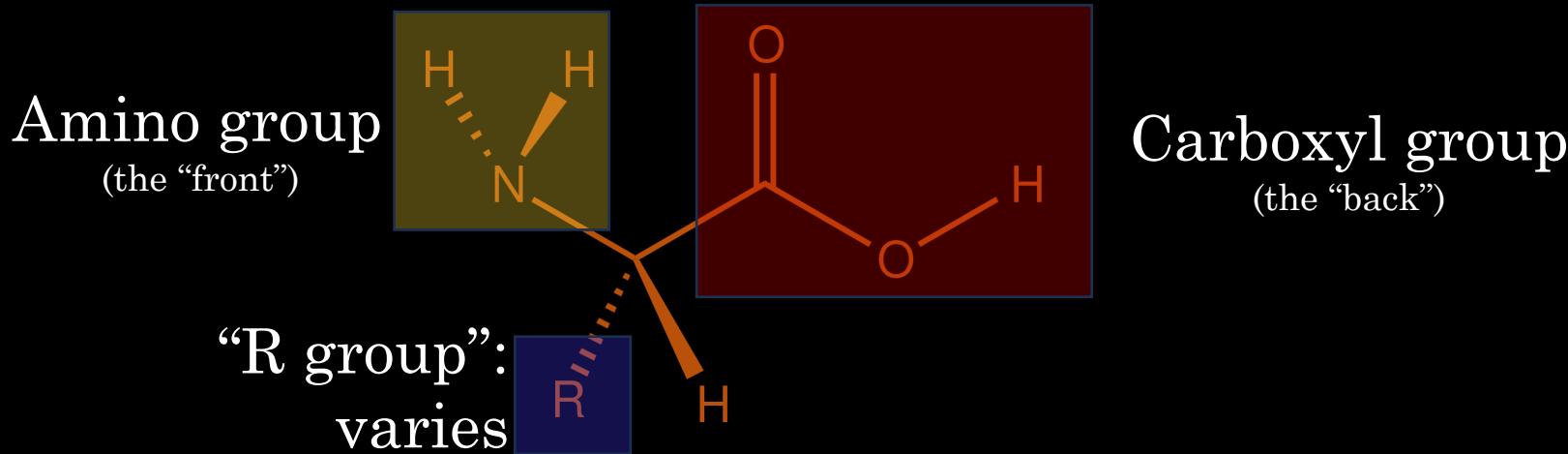
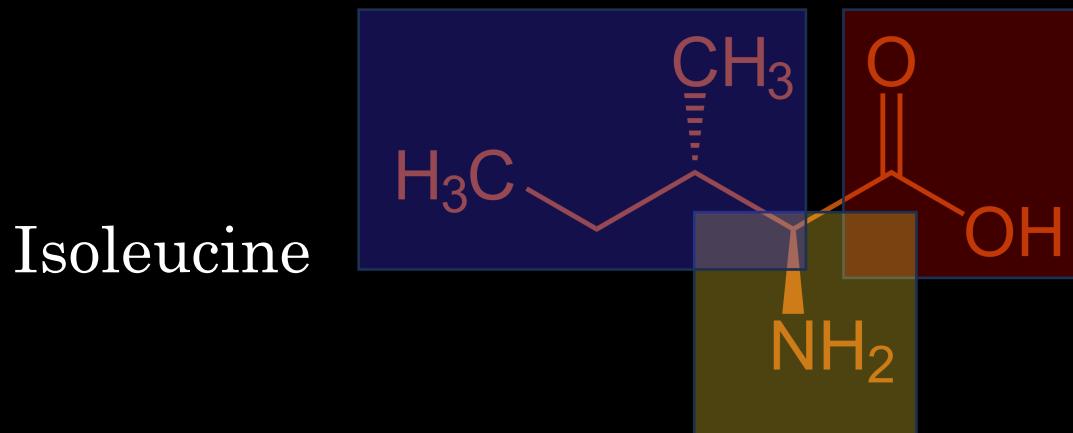
Naïvely: 20^k



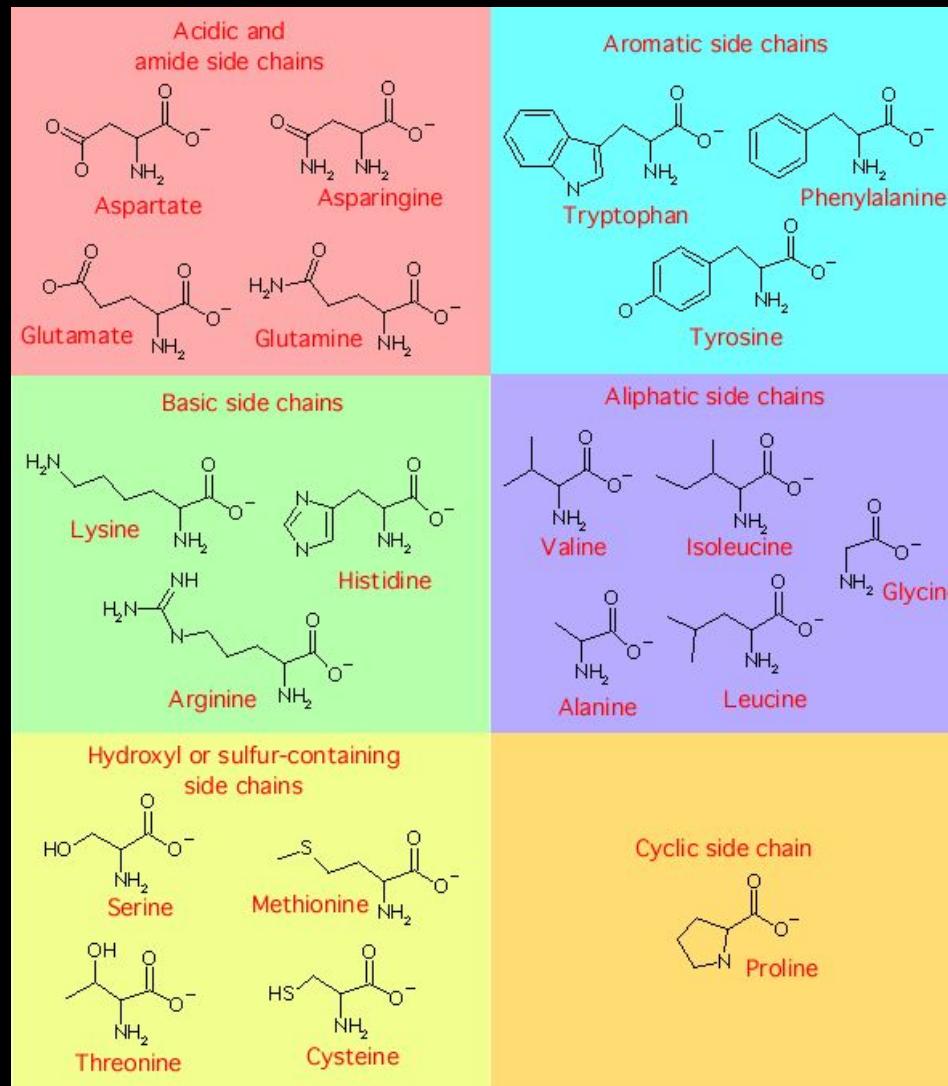
There is no complete degenerate alphabet for amino acids (although there could be – we would just need 2^{20} characters)

We can consider STRUCTURAL and FUNCTIONAL categories instead

General Amino Acid Structure



Structural and functional attributes



Reduced amino acid alphabets

$n = 2$

ADEGKNPQRST	CFHILMVWY
ADEGNPST	CHKQRW FILM VY
AGNPST	CHWY DEKQR FILM V
AGPST	CFWY DEN HKQR ILMV
APST	CW DEGN FHY ILMV KQR
AGST	CW DEN FY HP ILMV KQR
AST	CG DEN FY HP ILV KQR MW
AST	CW DE FY GN HQ ILV KR MP
AST	CW DE FY GN HQ IV KR LM P
AST	C DE FY GN HQ IV KR LM P W
AST	C DE FY G HQ IV KR LM N P W
AST	C DE FY G H IV KR LM N P Q W
AST	C DE FL G H IV KR M N P Q W Y
AST	C DE F G H IV KR L M N P Q W Y
AT	C DE F G H IV KR L M N P Q S W Y
AT	C DE F G H IV K L M N P Q R S W Y
A	C DE F G H IV K L M N P Q R S T W Y
A	C D E F G H IV K L M N P Q R S T W Y

$n = 19$

This is one of many possible sets of groupings!

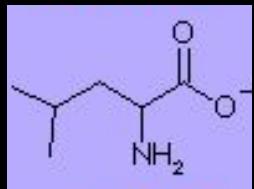
Correlation representations

- e.g., pseudo-amino acid composition
- Look at global correlations θ_i of chemical / structural features at a series of distances λ_i

$$\theta_1 = \frac{1}{L-1} \sum_{i=1}^{L-1} \Theta(R_i, R_{i+1})$$

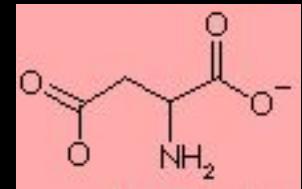
protein length

correlation of adjacent
amino acids ($\lambda = 1$)

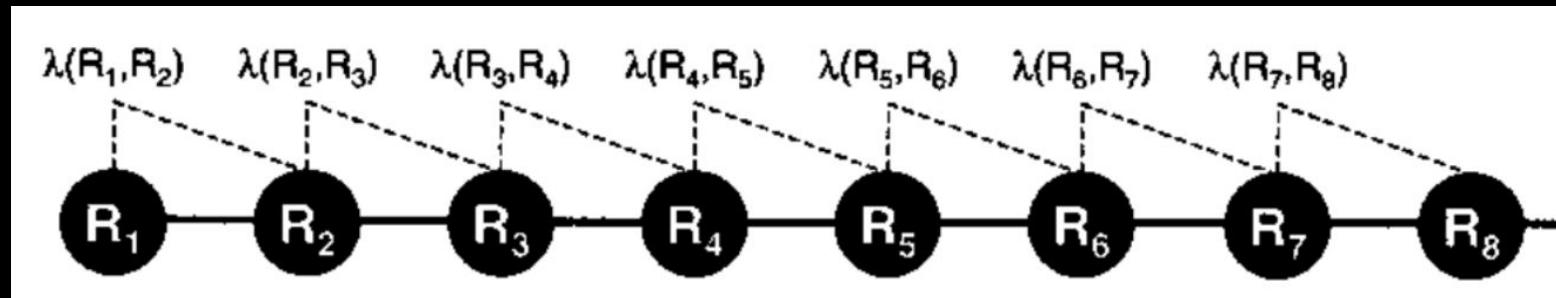


Leucine
Super-hydrophobic

Example: hydrophobicity (amino acid aversion to water)

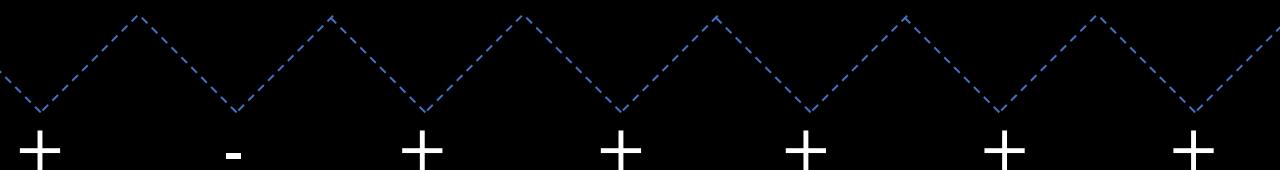


Aspartic acid
Super-hydrophilic

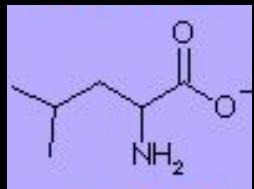


M A Q D Q K E K

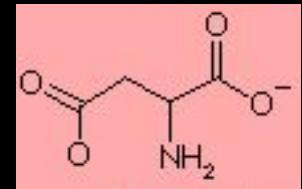
74 41 -10 -55 -10 -23 -31 -23



High average correlation

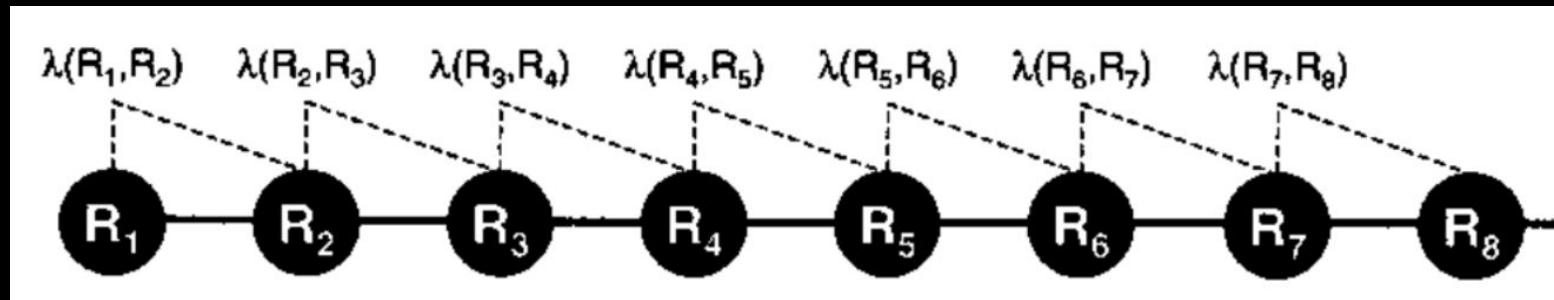


Leucine
Super-hydrophobic

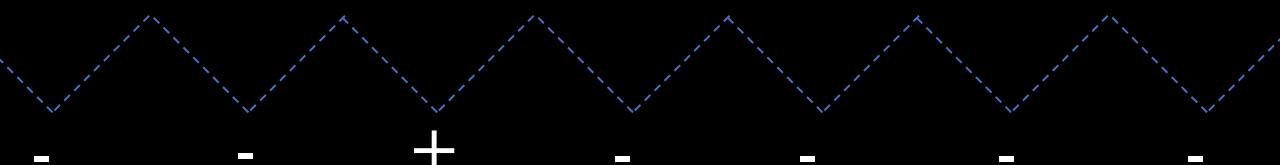


Aspartic acid
Super-hydrophilic

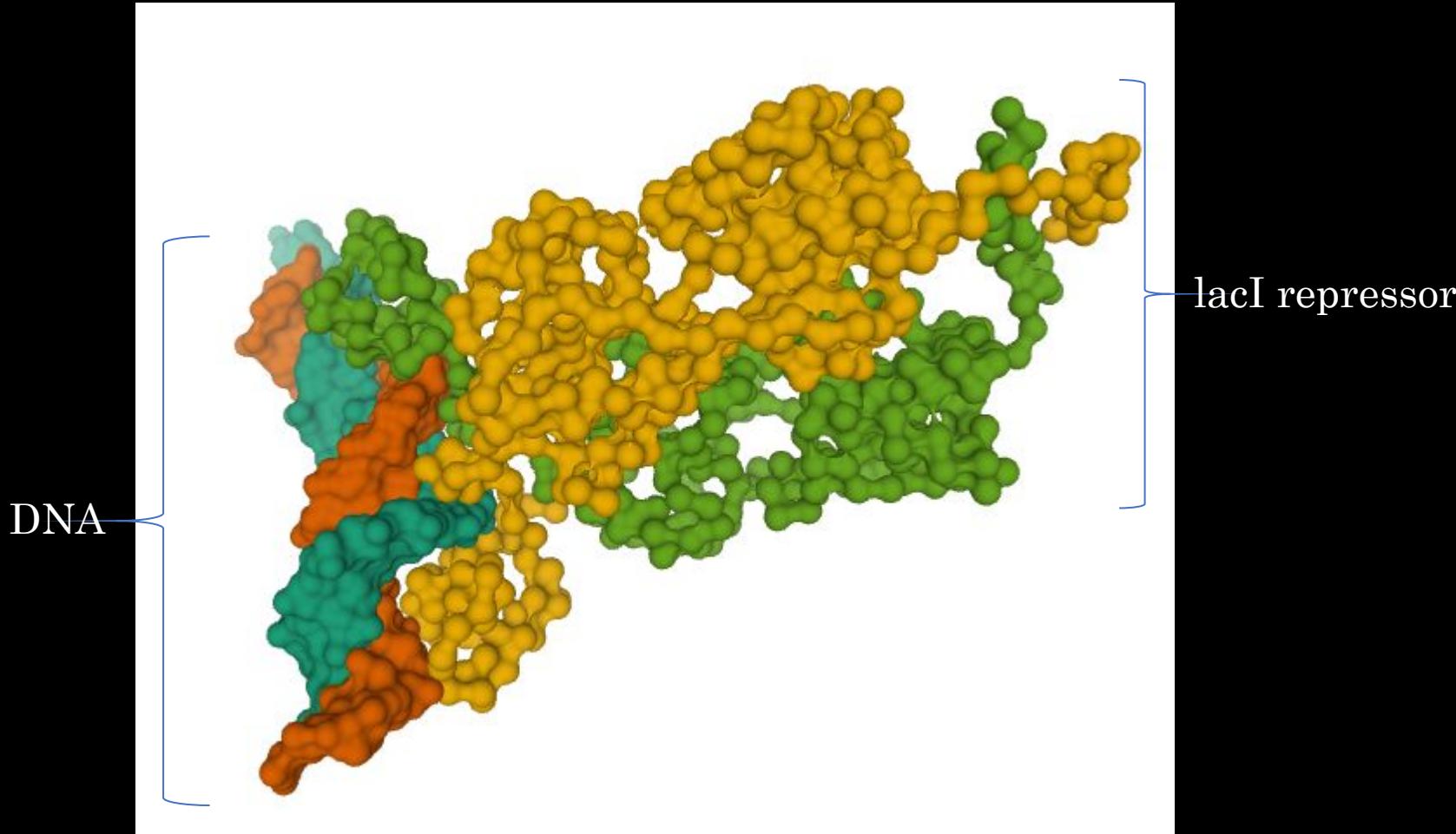
Example: hydrophobicity (amino acid aversion to water)



Q A Q D A K A K
-10 41 -10 -55 41 -23 41 -23



Poor average correlation

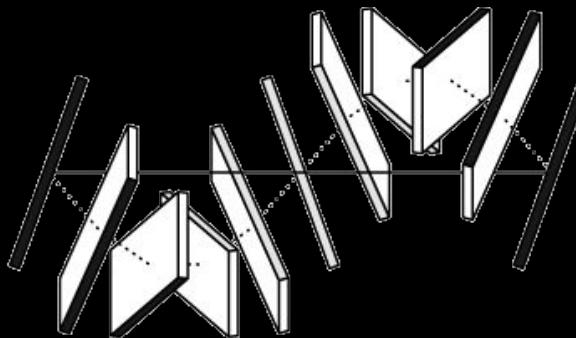


Part 2: Structural representations

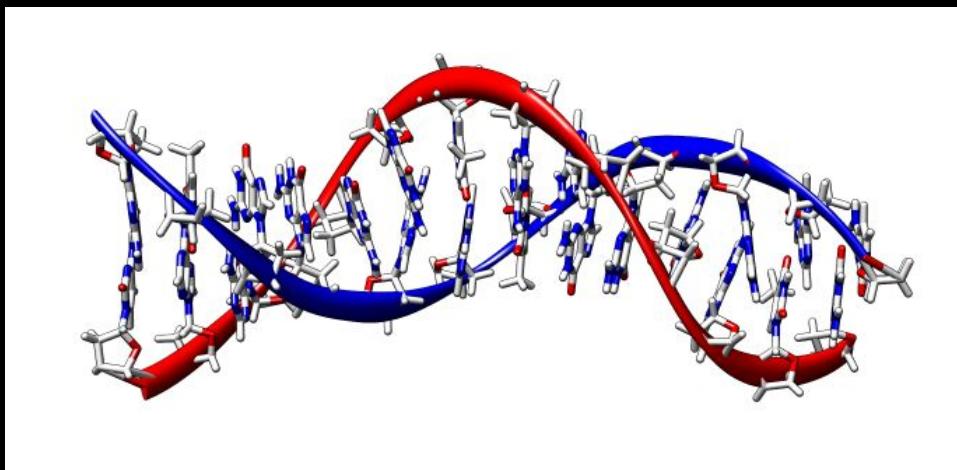
Structural representations of DNA

- Two ways to think about DNA structure:

Geometric parameters



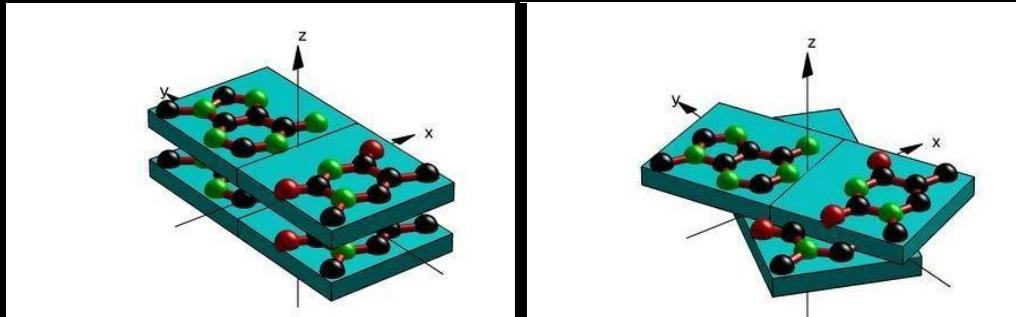
Roll = 12°, SMD = -2°



Atomic coordinates

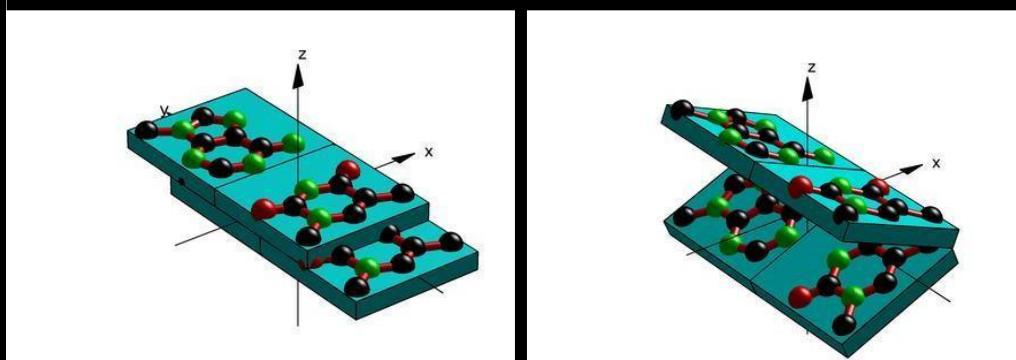
We can compute the...

Rise(dz)



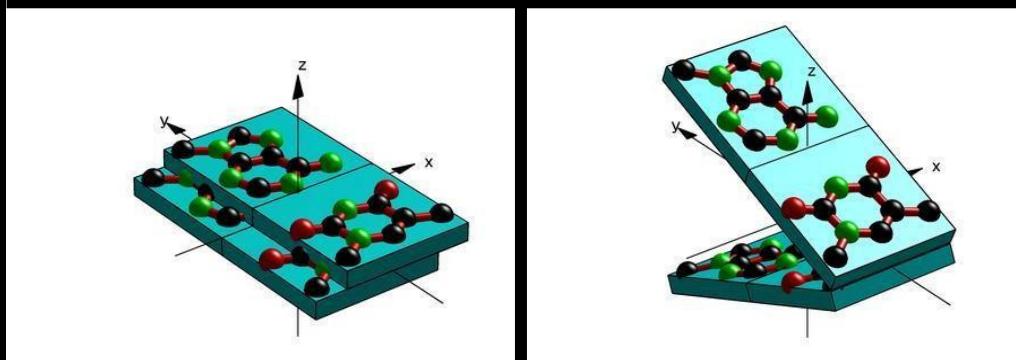
Twist(rz)

Slide(dy)



Roll(ry)

Shift(dx)



Tilt(rx)

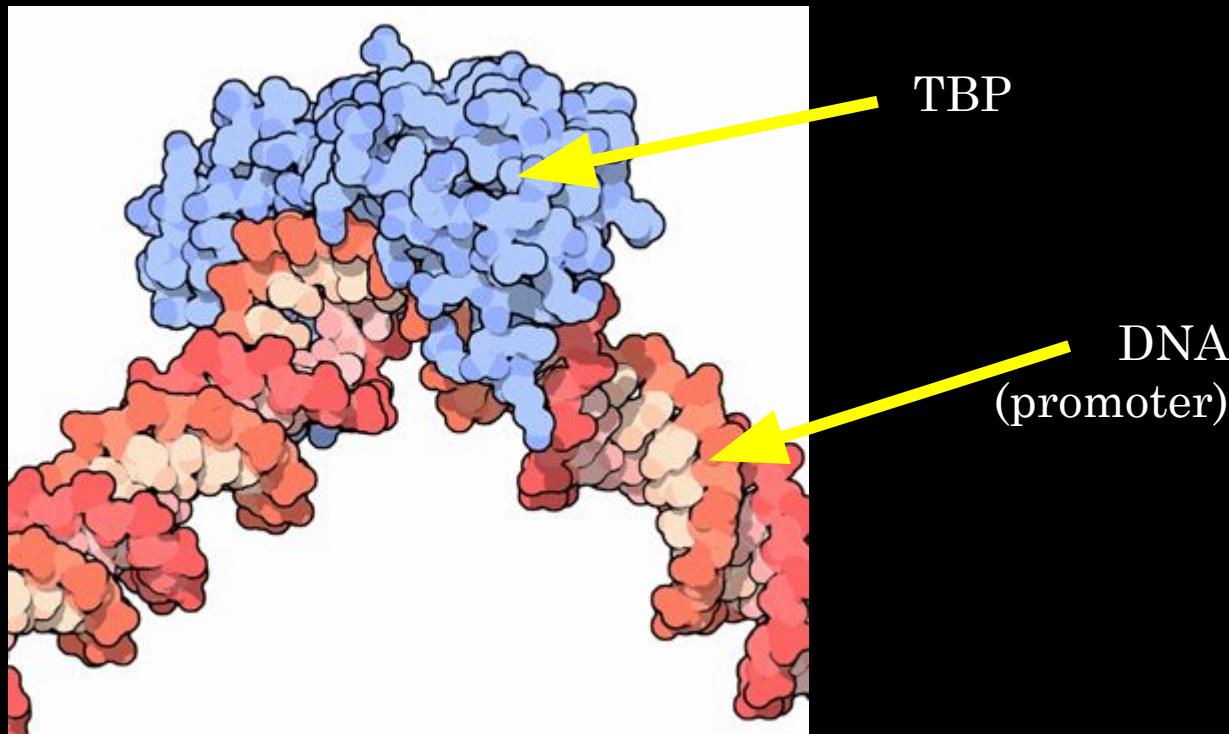
Between consecutive nucleotide pairs in the helix

Static parameters (twist, roll)

- AND -

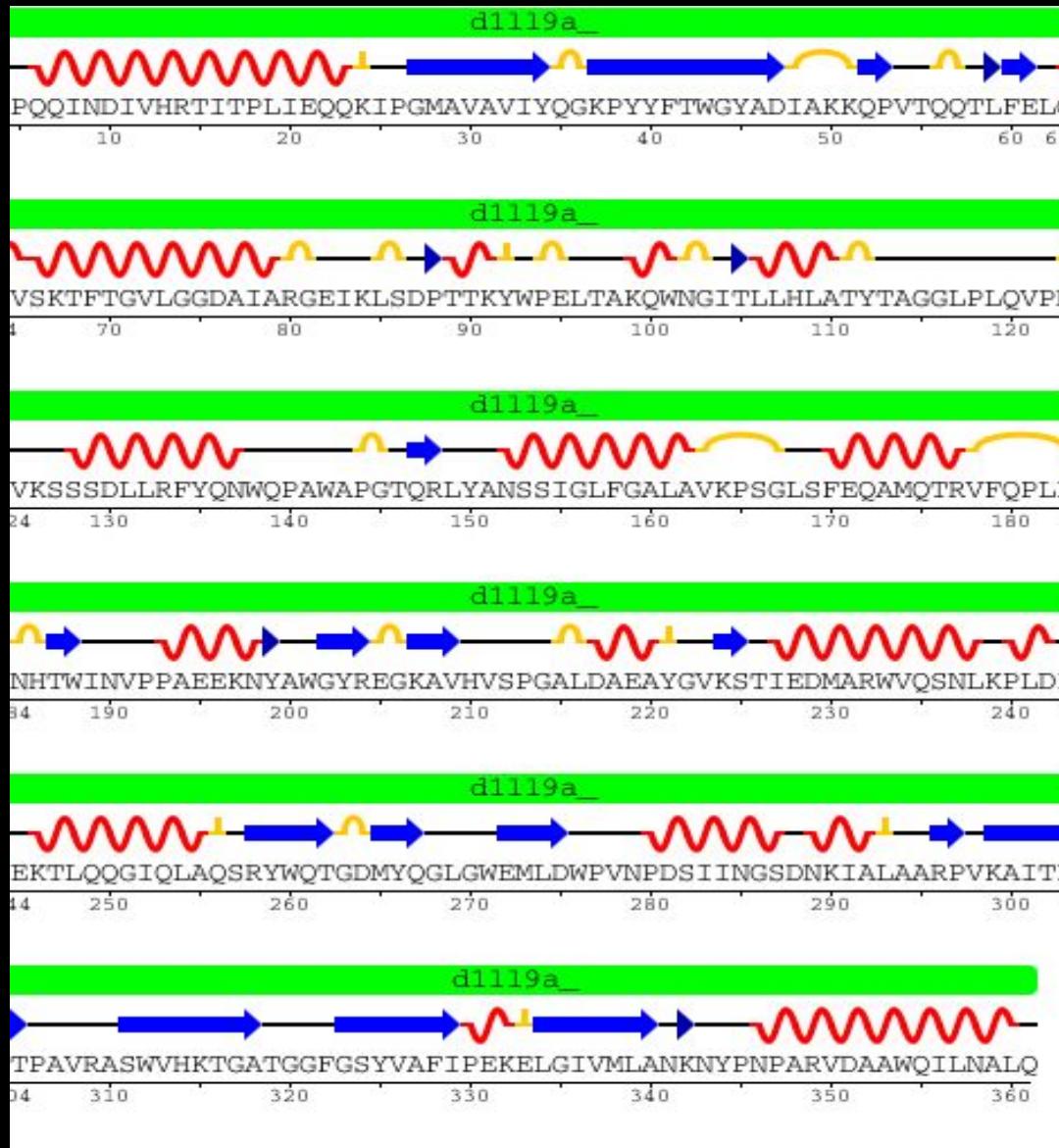
Dynamic parameters (flexibility/deformability)

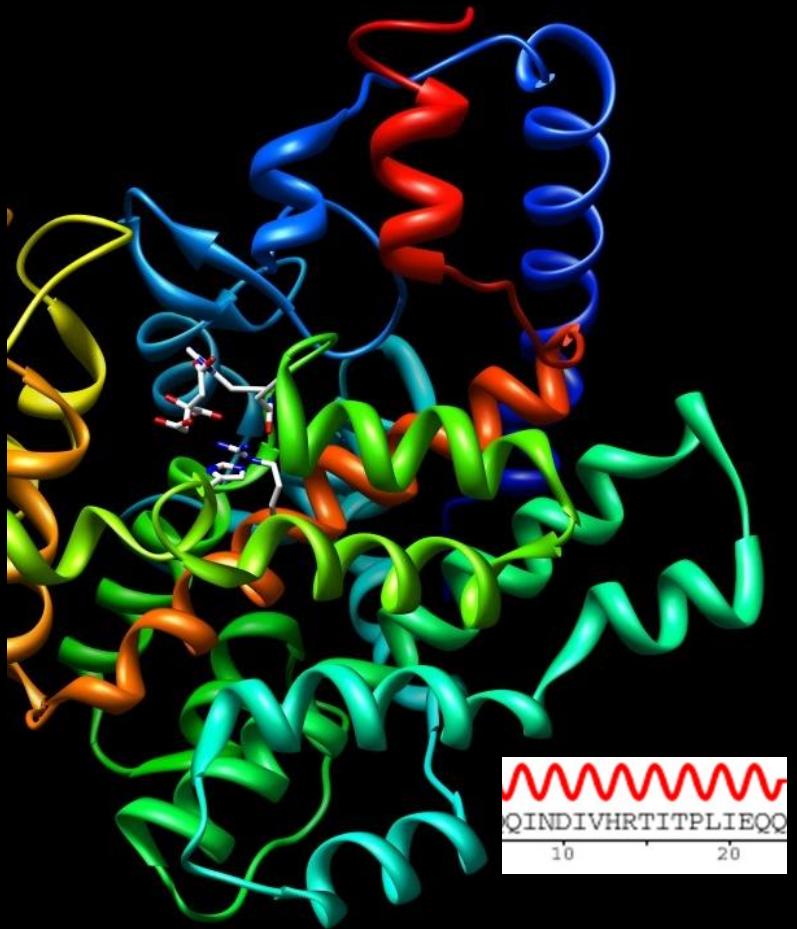
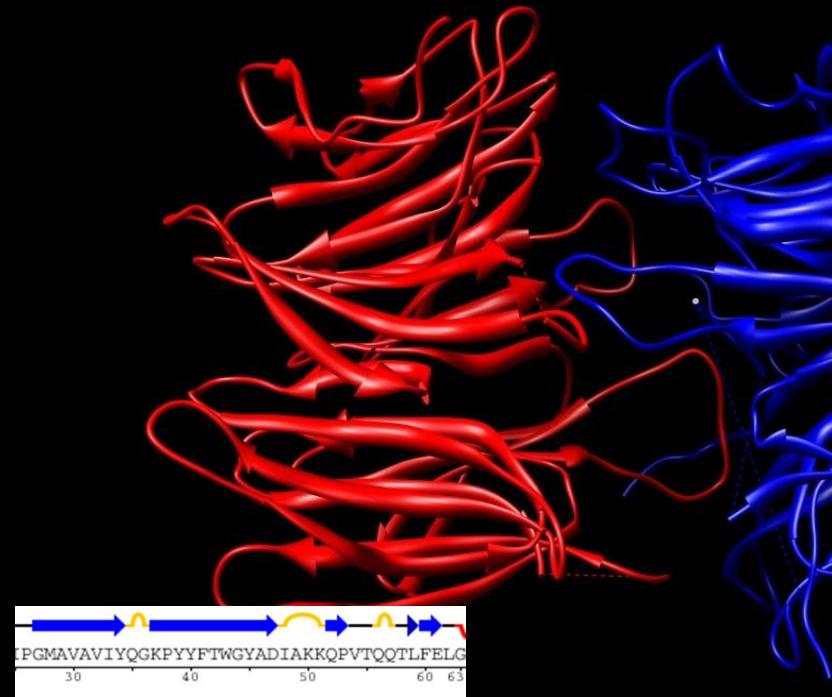
e.g., DNA complex with TATA-box binding protein (TBP)



Proteins tend to have more “interesting” structures that govern their behaviour, so structural methods are more frequently applied to proteins than to DNA

Secondary structure





Tertiary structure (e.g., atomic coordinates)

ATOM	3	C	PRO	A	1	63.886	41.846	3.646	1.00	22.65	C
ATOM	4	O	PRO	A	1	64.467	41.039	2.948	1.00	22.51	O
ATOM	5	CB	PRO	A	1	61.985	43.079	2.551	1.00	22.54	C
ATOM	6	CG	PRO	A	1	61.974	43.966	1.334	1.00	23.59	C
ATOM	7	CD	PRO	A	1	63.440	44.213	0.951	1.00	24.08	C
ATOM	8	N	GLN	A	2	63.711	41.737	4.969	1.00	23.06	N
ATOM	9	CA	GLN	A	2	64.116	40.581	5.732	1.00	20.94	C
ATOM	10	C	GLN	A	2	63.002	40.196	6.653	1.00	18.99	C
ATOM	11	O	GLN	A	2	62.479	41.045	7.339	1.00	21.48	O
ATOM	12	CB	GLN	A	2	65.410	40.873	6.513	1.00	18.89	C
ATOM	13	CG	GLN	A	2	65.904	39.624	7.267	1.00	21.48	C
ATOM	14	CD	GLN	A	2	67.379	39.737	7.626	1.00	27.58	C
ATOM	15	OE1	GLN	A	2	67.863	39.075	8.566	1.00	30.78	O
ATOM	16	NE2	GLN	A	2	68.080	40.643	6.939	1.00	26.63	N
ATOM	17	N	PHE	A	3	62.612	38.932	6.659	1.00	18.87	N
ATOM	18	CA	PHE	A	3	61.548	38.503	7.542	1.00	19.11	C
ATOM	19	C	PHE	A	3	62.096	37.578	8.572	1.00	18.63	C
ATOM	20	O	PHE	A	3	62.597	36.517	8.167	1.00	13.98	O
ATOM	21	CB	PHE	A	3	60.413	37.726	6.820	1.00	16.68	C
ATOM	22	CG	PHE	A	3	59.665	38.563	5.831	1.00	19.69	C

x *y* *z*

Less excruciating options: choose a subset of atoms (e.g., carbon atoms in the backbone)

Summary

1. There are many different applications of DNA, protein, and genome representations
2. No single representation is ideal for every task
3. DNA and protein have fundamentally different structures, and some types of representation make sense for one but not the other

