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Module 1 – Homology and Sequence 
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Homology and 
Sequence 
Alignment



Module Summary

• There are many ways to represent sequences…there is no 
universal best choice

• Point, insertion and deletion mutations make the alignment 
problem non-trivial (with exponential complexity!) We need 
efficient algorithms and appropriate statistics

• How can we efficiently do:
• Fast database searches?
• VERY fast database searches?
• Multiple sequence alignment?
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Molecular sequence representations
- or -

Time for some actual computer science

https://giphy.com/gifs/dna-l1fWtMmQbuGvm



Overview

1. Goals of sequence representation
2. Text string-based sequence representations
3. Advanced sequence representations: 

probabilities, data structures, models
4. Structural representations
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Comparison / classification / analysis

???

BlaI repressor bound to DNA
https://www.rcsb.org/3d-view/1XSD/1



(1) Identify functional patterns 
(e.g., sequence motifs or functional 
domains) in DNA or protein 
sequences

blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h

CAP-lacking sequences

http://en.wikipedia.org/wiki/File:48-CataboliteActivatorProtein-1cgp.tif

Catabolite activator protein
(CAP or CRP) bound to DNA

Experimentally validated CAP binding sites

atatgcctgacggagttcacacttgtaagttt tcaactacg
t
attcagtacaaaacgtgatcaacccctcaatt ttcccttgc
t
tcgctttgtcagctgtgacaagctccgcaaat cgtgacaat
a
aaaaacattttagagtgatatgtataacatta tggcgttta
t
caatctccgcgagcgtgccagttttcacattc ttcagttgc
a
cgcacattgggtataacgtgatcatatcaaca gaatcaata
a
tgggcagcttcttcgtcaaatttatcatgtgg ggcatcctt
a

What’s the difference?
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Goals of representation



Distinguish phenotypes based on sequence or structural variation
e.g., huntingtin gene, responsible for Huntington’s disease
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GCTGCCGGGACGGGTCCAAGATGGACGGCCGCTCAGGTTCTGCTTTTACCTGCGGCCCAGAGCCCCATTCA
TTGCCCCGGTGCTGAGCGGCGCCGCGAGTCGGCCCGAGGCCTCCGGGGACTGCCGTGCCGGGCGGGAGACC
GCCATGGCGACCCTGGAAAAGCTGATGAAGGCCTTCGAGTCCCTCAAGTCCTTCCAGCAGCAGCAGCAGCA
GCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAACAG

(About 10,000 more nucleotides in the gene)

# of CAG repeats Effect

< 27 Healthy

27-35 Intermediate

36-39 Disease (reduced 
penetrance)

> 39 Full disease effects

Goals of representation



Non-invasive Pre-Natal Testing of Cell-Free DNA
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Using genomics for rapid clinical diagnostics



Identifying AMR genes requires comparing sequences



Identifying AMR genes requires comparing sequences

RGI / ResFinder /
 AmrFinderPlus

Modified from: Boolchandani, Manish, Alaric W. D’Souza, and Gautam Dantas. "Sequencing-based methods and resources to study antimicrobial resistance." Nature Reviews Genetics 20.6 (2019): 356-370.



Identify important changes at the sequence and structural level

e.g. oseltamivir resistance in influenza H1N1 Neuraminidase

12van der Vries et al (2012) PLoS Pathogens
Doesn’t fit!

Goals of representation

Neuraminidase structure Normal structure Mutated version



Compute global dissimilarity between sequences in large datasets

13Ondov et al (2016) Genome Biol

>54,000 genomes 
clustered using MinHash 
(MASH) distance

Goals of representation



Find best encoding for machine-learning classification
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Simon and Silberg (2024), “The Illustrated AlphaFold”
https://elanapearl.github.io/blog/2024/the-illustrated-alphafold/

Sequence / structure encoding for AlphaFold

Goals of representation



Predicting ability to infect certain species from genome



Sequence representations
https://www.nist.gov/industry-impacts/accuracy-genetic-testing-technologies



Biological Sequences

Primary structure is just the sequence 

Higher levels of “structure” describe the three-dimensional features of molecules
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DNA …ACCGAATTTACGATACATG…

Protein …MLQELIVNEW…



Sequence Representations of DNA

Convert linear, double-stranded DNA into 
representation(s) that comprise a feature set

18
https://giphy.com/gifs/dna-N5Adsn0dgz6h2

?



Part 1: Primary Structure 
Sequences as a Bunch of Letters



The most common representation is (as you 
have already seen) a STRING representation 

with an alphabet of four letters

20

{A,C,G,T}

But there is a lot more we can do.



Meet the nucleotides!
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A G
C T

http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg


Degenerate characters

Every pair of nucleotides has something in common

22

A G
C T

STRONG vs. WEAK base pairing

http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg


Degenerate characters
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PURINE (large) vs. PYRIMIDINE (small)

A G
C T

http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg


A G
C T

Degenerate characters
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AMINO vs. KETO functional groups
(rarely useful)

http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg


IUPAC nomenclature –
All possible sets

A C G T Code ¬Code

A B

C D

G H

T V

M K

R Y
W S

N X

25



Example: recoding

Transitions: replace one nucleotide with the other of the same size
Transversions: replace one nucleotide with one of a different size

(C↔T) and (A↔G) generally more frequent {A,G}↔{C,T}

R/Y recoding hides transitions (since C,T→Y and A,G→R)

Good for dissimilar sequences as it reduces the number of differences

26
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GTCTAAAAAGTTCAAGGTTT
AACAAAGAAAATGAAGGTAT

RYYYRRRRRRYYYRRRRYYY
RRYRRRRRRRRYRRRRRYRY

Original gene sequences
(distance = 8/20)

Recoded gene sequences
(distance = 5/20)

R/Y recoding

Highlights the rarer (on average) changes



Word frequencies: k-mers

Decompose a sequence into a set of words of a given length
k-mers: the collection of words of a given length k

Nucleotides (k=1): {A,C,G,T}
Dinucleotides (k=2): {AA,AC,…,TT}
Trinucleotides (k=3): {AAA,AAC,…,TTT}
etc…

N(k)=4k

28



Sequence composition (k=1)
Most common: (G+C) content

12 G-C pairs, 8 A-T pairs, so (G+C)% = 60%

Total number of k-mers in a sequence of length l = l – k + 1

29

ACCGGCGCTTAGCAGGAAGA
TGGCCGCGAATCGTCCTTCT

A 6/20 = 0.30
C 0.25
G 0.35
T 0.10

k = 1
AA 1/19 = 0.053
AC 0.053
… …
GC 0.158

k = 2
AAA 0/18 = 0.00
ACC 1/18 = 0.056

… …
TTT 0

k = 3



Sequence composition (k>1)
k-mers are usually an overlapping representation

30

AC 1
CC 1
CG 1
GG 1
GC 1

ACCGGC



G+C content of bacterial genomes

31
McCutcheon et al. (2009) PLoS Genet



G+C content varies within genomes

32
Hershberg (2016) Encyclopedia of Genes and Genomes



Mobile genetic elements can (sometimes) 
be found using GC%

33



k-mer variants:
Gap spectra

Like k-mers, but include internal wildcards

Length = k
# of ‘literals’ = L

k=4, L=2:{ ANNA, ANNC, …, TNNT }

Can model higher-order relationships without exhaustive enumeration
Can also tailor literal / wildcard combinations to specific expected 

patterns
34



Length k
Any IUPAC character (except X) can be used at any 

position

k=2: { AA, AB, AC, AD, AG, …, VV }

15 letters in IUPAC alphabet, therefore N(k) = 15k

35

k-mer variants:
Degeneracy



All possible degenerate characters of length 1 to (say) 10

{ A, B, C, …, V }

{ AA, AB, …, VV }

…

{ AAAAAAAAAA, AAAAAAAAAC, …, VVVVVVVVVV }

36



So…

151 + 152 + 153 + 154 + 155 + 156 + 157 + 158 + 159 + 1510

≅ 5.8 × 1011

Hmmm.

This is a problem we will return to

37



Tokenization: 
Escaping the tyranny of fixed length

•Why should we rely on a fixed k?

•Tokenization builds variable-length representations 
based on abundance in a given training set

•Frequently used in transformers and other “deep 
learning” architectures. 

38



Tokenization
Example: complete 6-mer decomposition - 46 k-mers = 4096
16S ribosomal RNA gene from bacteria (~1500 bp in length)
What if we try tokenization?

39k = 6

Much wider range of features
Sequence 
representations 
are more compact

k-mers tokens

Alex Manuele, MCS thesis



Advantages of Word-Based 
Representations

• SPEED: Instead of computationally demanding sequence 
alignment (coming soon), k-mer and token counts can be 
placed in a lookup table that can be rapidly searched

40https://www.rcsb.org/structure/2O9L

• CUSTOMIZATION: You can 
do an exhaustive count of all 
words of a given k, but you 
can also tailor the set of 
representations based on 
knowledge of the problem

DNA

RNA pol
sigma factor



Disadvantages of Word-Based 
Representations

• LOSS OF CONTEXT: You get a compositional summary, but 
you lose all information about which patterns are close to 
each other in the sequence.

• REDUNDANCY among overlapping words – can be 
inefficient and introduce big correlations in your data

• NOVEL DATA can struggle to generalise to new data with 
very different word distributions (e.g., a new taxa!)

41

ACCGGCGCTTAGCAGGAAGA

?
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Beyond Words

or, “what can we do that’s smarter than k-mers?”



Randomly sampling k-mers

• The idea: k-mers are great, but there sure are a lot of them.
• If k-mers are too short, we can lose key information that 

differentiate genomes
• If k-mers are too long, there will be an overwhelming number of 

them and many will be unique

• We can instead define an “appropriate” k and sample 
randomly from the resulting k-mers

43

{ AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT }

Ondov et al. (2016) Genome Biol



minHash

• Problems with random k-mer sampling:
• Potential correlation among sampled k-mers
• Are you always going to choose the same k-mers? Will they always 

make sense?

• Hashing: a potential solution
• Use a hash function to map k-mers to some value
• Hashing is deterministic and can map very similar k-mers to very 

different values

44Ondov et al. (2016) Genome Biol

AAAAAAAAAA → 583250
AAAAAAAAAT → 385325



Sketching

• Compute the set of k-mers

45

AAAAAAAAAA
AAAAAAAAAC
AAAAAAAAAG
AAAAAAAAAT

…



Sketching

• Apply a hash function that changes their order

46

AAAAAAAAAA
AAAAAAAAAC
AAAAAAAAAG
AAAAAAAAAT

…

h
147180
287070
295379
338908
354312
385325
572124
583250

…



Sketching

• Take the smallest hash function values (the minHash)

47

AAAAAAAAAA
AAAAAAAAAC
AAAAAAAAAG
AAAAAAAAAT

…

h
147180
287070
295379
338908
354312
385325
572124
583250

…

• This is the new sequence representation! It is a random and 
representative sample of the original sequence



Similarity Calculation

• Compare the minHashes of two genomes, and determine 
their Jaccard similarity index J(A,B)

48

True distance
(all k-mers / hashed values)

Jaccard index
(distance based on sketches)

Gray = unique



Similarity Calculation

• Compare the minHashes of two genomes, and determine 
their Jaccard similarity index J(A,B)

49

Total number of unique 
values in both hashes = 17

Intersection of both hashed 
sets: 3 elements

Jaccard index = 3/17 = 0.176 (not especially similar) 



50Ondov et al (2016) Genome Biol

Why is it non-linear?

Mash Distance

Because distances 
between genomes do not 

increase linearly with 
number of mutations!

Jaccard index

k-mer length

D ≤ 0.05, p-value ≤ 10-10



DNA2Vec 
• Associations among DNA words based on neighbourhood 
similarity

1. Do a k-mer decomposition of the sequence
2. Each k-mer Z has a neighbourhood of adjacent k-mers
3. Train a machine-learning classifier to predict the adjacent 

k-mers, given Z 

• More detail coming in classification module

51Ng (2017) arXiv



Protein sequences: amino acid k-mers

Naïvely: 20k

There is no complete degenerate alphabet for amino acids (although there 
could be – we would just need 220 characters)

We can consider STRUCTURAL and FUNCTIONAL categories instead
52

A 0.02
C 0.09
D 0.11
E 0.10
…

k = 1

Amino acids Frequencies



General Amino Acid Structure

53

Carboxyl group
(the “back”)

Again, from Wikipedia

Amino group
(the “front”)

“R group”:
varies

Isoleucine



Structural and functional attributes

54
http://www.bact.wisc.edu/Microtextbook/images/book_4/chapter_2/2-10.gif



Reduced amino acid alphabets

55
Susko and Roger (2007) PROTEINS: Mol Biol Evol

n = 19

n = 2

This is one of many 
possible sets of 
groupings!



Correlation representations
• e.g., pseudo-amino acid composition
• Look at global correlations θi of chemical / structural features 
at a series of distances λi

56

protein length
correlation of adjacent 

amino acids (λ = 1)

Chou (2001) PROTEINS: Structure, Function, and Genetics
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Example: hydrophobicity
(amino acid aversion to water)

Chou (2001) PROTEINS: Structure, Function, and Genetics

M  A  Q  D  Q  K  E  K
74   41  -10  -55  -10  -23  -31 -23

+ - + + + + +

High average correlation

Leucine
Super-hydrophobic

Aspartic aciD
Super-hydrophilic



58Chou (2001) PROTEINS: Structure, Function, and Genetics

Q  A  Q  D  A  K  A  K
-10  41  -10  -55  41  -23   41 -23

- - + - - - -

Poor average correlation

Example: hydrophobicity
(amino acid aversion to water)

Leucine
Super-hydrophobic

Aspartic aciD
Super-hydrophilic



Part 2: Structural 
representations

59

lacI repressor

DNA



Structural representations of DNA

• Two ways to think about DNA structure:

60

Atomic coordinates

Geometric parameters

http://rutchem.rutgers.edu/~xiangjun/3DNA/images/regular_dna.gif



gibk26.bse.kyutech.ac.jp/jouhou/readout/help.html
61

Rise(dz)

Shift(dx)

Slide(dy)

Twist(rz)

Roll(ry)

Tilt(rx)

We can compute the…

Between consecutive nucleotide pairs in the helix



Static parameters (twist, roll)
- AND -

Dynamic parameters (flexibility/deformability)

62

e.g., DNA complex with TATA-box binding protein (TBP)

DNA
(promoter)

TBP



Proteins tend to have more “interesting” structures 
that govern their behaviour, so structural methods 
are more frequently applied to proteins than to DNA

63



http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=1LL9
64

Secondary 
structure



Beta sheet

65

Alpha helix



Tertiary structure
(e.g., atomic coordinates)

66

ATOM      3  C   PRO A   1      63.886  41.846   3.646  1.00 22.65           C
ATOM      4  O   PRO A   1      64.467  41.039   2.948  1.00 22.51           O
ATOM      5  CB  PRO A   1      61.985  43.079   2.551  1.00 22.54           C
ATOM      6  CG  PRO A   1      61.974  43.966   1.334  1.00 23.59           C
ATOM      7  CD  PRO A   1      63.440  44.213   0.951  1.00 24.08           C
ATOM      8  N   GLN A   2      63.711  41.737   4.969  1.00 23.06           N
ATOM      9  CA  GLN A   2      64.116  40.581   5.732  1.00 20.94           C
ATOM     10  C   GLN A   2      63.002  40.196   6.653  1.00 18.99           C
ATOM     11  O   GLN A   2      62.479  41.045   7.339  1.00 21.48           O
ATOM     12  CB  GLN A   2      65.410  40.873   6.513  1.00 18.89           C
ATOM     13  CG  GLN A   2      65.904  39.624   7.267  1.00 21.48           C
ATOM     14  CD  GLN A   2      67.379  39.737   7.626  1.00 27.58           C
ATOM     15  OE1 GLN A   2      67.863  39.075   8.566  1.00 30.78           O
ATOM     16  NE2 GLN A   2      68.080  40.643   6.939  1.00 26.63           N
ATOM     17  N   PHE A   3      62.612  38.932   6.659  1.00 18.87           N
ATOM     18  CA  PHE A   3      61.548  38.503   7.542  1.00 19.11           C
ATOM     19  C   PHE A   3      62.096  37.578   8.572  1.00 18.63           C
ATOM     20  O   PHE A   3      62.597  36.517   8.167  1.00 13.98           O
ATOM     21  CB  PHE A   3      60.413  37.726   6.820  1.00 16.68           C
ATOM     22  CG  PHE A   3      59.665  38.563   5.831  1.00 19.69           C

x y z

Less excruciating options: choose a subset of atoms (e.g., carbon atoms in the backbone)



Summary
1. There are many different applications of DNA, protein, 

and genome representations

2. No single representation is ideal for every task

3. DNA and protein have fundamentally different 
structures, and some types of representation make sense 
for one but not the other
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