Molecular sequence representations

-or -

Time for some actual computer science
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Module Summary

* There are many ways to represent sequences...there 1s no
universal best choice

* Point, insertion and deletion mutations make the alignment
problem non-trivial (with exponential complexity!) We need
efficient algorithms and appropriate statistics

 How can we efficiently do:

 Fast database searches?
* VERY fast database searches?
* Multiple sequence alignment?



Molecular sequence representations
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Time for some actual computer science

https://giphy.com/gifs/dna-11fWtMmQbuGvm
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. Structural representations



Comparison / classification / analysis

Blal repressor bound to DNA
https://[www.rcsb.org/3d-view/1XSD/1



Goals of representation

(1) Identify functional patterns
(e.g., sequence motifs or functional
domains) in DNA or protein
sequences

Catabolite activator protein
(CAP or CRP) bound to DNA

CAP-lacking sequences

cggagttcacacttgtaagttt

blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla
h

aaacgtgatcaacccctcaatt

agctgtgacaagctccgcaaat

blahblahblahblahblahblahblahblahblahblahbla
h
blahblahblahblahblahblahblahblahblahblahbla

tagagtgatatgtataacatta

Experimentally validated CAP binding:sites

a

cgcacattgg What's the difference?

a
http://en.wikipSdid ofg/wiky/ File:48:CataboliteActivator Proteird Béep #iFCT T



Goals of representation

Distinguish phenotypes based on sequence or structural variation

e.g., huntingtin gene, responsible for Huntington’s disease

GCTGCCGGGACGGGTCCAAGATGGACGGCCGCTCAGGTTCTGCTTTTACCTGCGGCCCAGAGCCCCATTCA
TTGCCCCGGTGCTGAGCGGCGCCGCGAGTCGGCCCGAGGCCTCCGGEGEGACTGCCGTGCCGGGCGEGGAGACC
GCCATGGCGACCCTGGAAAAGCTGATGAAGGCCTTCGAGTCCCTCAAGTCCTTCCAGCAGCAGCAGCAGCA
GCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAACAG

(About 10,000 more nucleotides in the gene)

Healthy

Intermediate

Disease (reduced
penetrance)

Full disease effects



Non-invasive Pre-Natal Testing of Cell-Free DNA

Chromosomal
aneuploidy detection
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Using genomics for rapid clinical diagnostics

48-72 hours

Culture Antibiotic Susceptibility Test

18-24 hours

Culture Sequencing

4-8 hours

Direct Sequencing

Time on Empirical Therapy



|dentifying AMR genes requires comparing sequences

=

G

DNA Sequencing
Genome Assembly

Clinical/Vet/Public Health
Sample

AMR Gene
Detection

Pathogen
Genome

AMR Genotype
Report

Interpretation
Contextualisation

Clinical/Vet/Public Health
Report



|dentifying AMR genes requires comparing sequences

Assembled contigs

Gene finding
and annotation

#
— — —

Reference database

Modified from: Boolchandani, Manish, Alaric W. D’Souza, and Gautam Dantas. "Sequencing-based methods and resources to study antimicrobial resistance.” Nature Reviews Genetics 20.6 (2019): 356-370.



Goals of representation

Identify important changes at the sequence and structural level

e.g. oseltamivir resistance in influenza H1N1 Neuraminidase

Neuraminidase structure Normal structure Mutated version

C 1223 wilditype ligand-free structure B 1223R mutant with oseltamivir
(VNO4) (NL2631)

Oseltamivie
S247

s
223-pocket | \

Doesn’t fit!

van der Vries et al (2012) PLoS Pathogens
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Goals of representation

Compute global dissimilarity between sequences in large datasets

>54,000 genomes
clustered using MinHash

(MASH) distance

Ondov et al (2016) Genome Biol
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Goals of representation

Find best encoding for machine-learning classification

Sequence / structure encoding for AlphaFold

Template
search | =

Confidence

Genetic module

search S

Template MSA
—+—> module — module — :
(2 blocks) (4 blocks) Pairformer ; _ Diffusion

Input

Conformer ¢ & embedder

i 3 blocks ir
ooy generation ( ) | Pair E (48 blocks) e

ligands, © (3424 + 3 blocks)
covalent Vol ;
bonds

Recycling Diffusion iterations

1. Input Preparation 2. Representation Learning 3. Structure Prediction

Simon and Silberg (2024), “The Illustrated AlphaFold”

https://elanapear].github.io/blog/2024/the-illustrated-alphafold/ H



Predicting ability to infect certain species from genome

Genomes Machine Learning Prediction Feature Importance

SpeciesY Q1 x @- x @t
Species X Ot x @- x @MW

|

|
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Biological Sequences

Primary structure is just the sequence

Higher levels of “structure” describe the three-dimensional features of molecules

DNA ACCGAATTTACGATACATG...

Protein ...MLQELIVNEW...

17



Sequence Representations of DNA

Convert linear, double-stranded DNA 1nto
representation(s) that comprise a feature set

https://giphy.com/gifs/dna-N5Adsn0dgz6h2

18
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The most common representation 1s (as you
have already seen) a STRING representation
with an alphabet of four letters

{A/C/GIT}

But there 1s a lot more we can do.

20



Meet the nucleotides!

21


http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg

Degenerate characters

Every pair of nucleotides has something in common

o A
« . N / N----- H-N \>
base pairing N=/ >N
o} R
22

Adenine Thymine


http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg

Degenerate characters

PURINE (large) vs.

23


http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg

Degenerate characters

A | G
T

AMINO vs. functional groups
(rarely useful)

24


http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/adenine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/thymine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/cytisine.jpg
http://jchemed.chem.wisc.edu/JCEWWW/Features/MonthlyMolecules/2007/May/guanine.jpg

[IUPAC nomenclature —
All possible sets

C G T Code | "Code

25



Example: recoding

Transitions: replace one nucleotide with the other of the same size
Transversions: replace one nucleotide with one of a different size

(CT) and (A—Q) generally more frequent {A,G}«{C,T}

R/Y recoding hides transitions (since C,T—Y and A,G—R)

Good for dissimilar sequences as 1t reduces the number of differences

26



R/Y recoding

GTCTAAAAAGTTCAAGGTTT RYYYRRRRRRYYYRRRRYYY
CAAACAAAATCAAGGTAT REYRERRRRRREYERRRRYRY
Original gene sequences Recoded gene sequences

(distance = 8/20) (distance = 5/20)

Highlights the rarer (on average) changes

Al



Word frequencies: k-mers

Decompose a sequence into a set of words of a given length
k-mers: the collection of words of a given length £

Nucleotides (k=1): {A,C,G,T}
Dinucleotides (k=2): {AA,AC,..., TT}
Trinucleotides (k=3): {AAA AAC,..., TTT}
etc...

N(k)=4*

28



Sequence composition (k=1)

Most common: (G+C) content

TGGCCGCGAATCGTCCTTCT

12 G-C pairs, 8 A-T pairs, so (G+C)% = 60%

Total number of k-mers 1n a sequence of length [=/—-k + 1

k=1 k=2 k=3
A 6/20 = 0.30 Y 1/19 = 0.053 AAA 0/18 = 0.00
C 0.25 AC 0.053 ACC 1/18 = 0.056
G 0.35
T 0.10 cle 0.158 TTT 0

29



Sequence composition (k>1)

k-mers are usually an overlapping representation

ACCGGC

AC 1
CC
CG
GG
GC




G+C content of bacterial genomes

Hodgkinia Erythrobacter litoralis

S
—
v
(]
—
c
o
v
U
O

Wolbachia pipientis

Sulcia muelleri
Pelagibacter ubique

Buchnera aphidicola Cc
Carsonella ruddii

o5 1
Genome size (Mb)

McCutcheon et al. (2009) PLoS Genet



G+C content varies within genomes

60 80

%GC (intergenic sequences)

Hershberg (2016) Encyclopedia of Genes and Genomes

32



Mobile genetic elements can (sometimes)
be found using GC%
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k-mer variants:
Gap spectra

Like k-mers, but include internal wildcards

Length = £
# of ‘literals’ = LL

k=4, L=2:{ ANNA, ANNC, ..., TNNT }

Can model higher-order relationships without exhaustive enumeration

Can also tailor literal / wildcard combinations to specific expected
patterns

34



k-mer variants:
Degeneracy

Length &

Any IUPAC character (except X) can be used at any
position

k=2: { AA, AB, AC, AD, AG, ..., VV }

15 letters in IUPAC alphabet, therefore N(k) = 15%

35



All possible degenerate characters of length 1 to (say) 10
{A,B,C,...,V}

fAA, AB, ..., VV !}

{ AAAAAAAAAA, AAAAAAAAAC, ..., VVVVVVVVVV |

36



So...

151+ 152+ 152+ 15%+ 15°+ 15+ 157+ 158 + 152 + 1510

= 5.8 x 10!

Hmmm.

This 1s a problem we will return to

37



Tokenization:
Escaping the tyranny of fixed length

*Why should we rely on a fixed k?

*Tokenization builds variable-length representations
based on abundance 1n a given training set

*Frequently used in transformers and other “deep
learning” architectures.

38



Tokenization

Example: complete 6-mer decomposition - 4° k-mers = 4096
16S ribosomal RNA gene from bacteria (~1500 bp 1n length)
What if we try tokenization?

Much wider range of features
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Advantages of Word-Based
Representations

 SPEED: Instead of computationally demanding sequence
alignment (coming soon), k-mer and token counts can be
placed 1n a lookup table that can be rapidly searched

« CUSTOMIZATION: You can
do an exhaustive count of all
words of a given k, but you
can also tailor the set of
representations based on
knowledge of the problem

RNA pol

sigma factor

DNA

https://www.rcsb.org/structure/209L 40



Disadvantages of Word-Based
Representations

« LOSS OF CONTEXT: You get a compositional summary, but

you lose all information about which patterns are close to
each other in the sequence.

?

ACCGGCGCTTAGCAGGAAGA

« REDUNDANCY among overlapping words — can be
inefficient and introduce big correlations in your data

* NOVEL DATA can struggle to generalise to new data with
very different word distributions (e.g., a new taxa!)

41






Randomly sampling £-mers

* The 1dea: k-mers are great, but there sure are a lot of them.

 If k-mers are too short, we can lose key information that
differentiate genomes

o If k-mers are too long, there will be an overwhelming number of
them and many will be unique

* We can 1instead define an “appropriate” k£ and sample
randomly from the resulting k-mers

{ ) AC7 ) AT7 CA7 ) ) ) Y ) GG’ ) TA? ) ) }

Ondov et al. (2016) Genome Biol

43



minHash

* Problems with random k-mer sampling:
* Potential correlation among sampled k-mers

» Are you always going to choose the same k-mers? Will they always
make sense?

 Hashing: a potential solution
* Use a hash function to map k-mers to some value

 Hashing 1s deterministic and can map very similar k-mers to very
different values

AAAAAAAAAA — 583250
AAAAAAAAAT — 385325

Ondov et al. (2016) Genome Biol

44



Sketching

* Compute the set of k-mers

AAAAAAAAAA
AAAAAAAAAC
AAAAAAAAAG
AAAAAAAAAT

45



* Apply a hash function that changes their order

AAAAAAAAAA
AAAAAAAAAC
AAAAAAAAAG
AAAAAAAAAT

h

=)

Sketching

147180
287070
295379
338908
354312
385325
572124
583250

46



Sketching

* Take the smallest hash function values (the minHash)

147180

AAAADAAADAL A ;g;g;g

AAAAAADAALC ‘ 338908
AAAADAAAAAG 354312

385325
AAAAAADAAAT 572124

583250

* This 1s the new sequence representation! It is a random and
representative sample of the original sequence



Similarity Calculation

* Compare the minHashes of two genomes, and determine
their Jaccard similarity index J(A,B)

Gray = unique e

. |AnB| |S(AUB)NS(A)nS(B)|
J(A,B) = =

AUB| IS(AUB)|

7/ \

True distance Jaccard index
(all k-mers / hashed values) (distance based on sketches)

48



Similarity Calculation

* Compare the minHashes of two genomes, and determine
their Jaccard similarity index J(A,B)

Intersection of both hashed
sets: 3 elements

@\

S(AUB)NS(A)nS(B)|

S(AuB)|

Total number of unique
values in both hashes = 17

Jaccard index = 3/17 = 0.176 (not especially similar) 49



Ondov et al (2016) Genome Biol

Mash Distance

Jaccard index

k-mer length

Why is it non-linear?

Because distances
between genomes do not
Increase linearly with

D <0.05, p-value < 10" number of mutations!

50



DNA2Vec

» Associations among DNA words based on neighbourhood
similarity

1. Do a k-mer decomposition of the sequence
Each k-mer Z has a neighbourhood of adjacent k-mers

3. Train a machine-learning classifier to predict the adjacent
k-mers, given Z

* More detail coming in classification module

Ng (2017) arXiv

51



Protein sequences: amino acid k-mers

Naively: 20"

0.02
0.09

0.11 Frequencies
0.10

Amino acids

om O O >

There 1s no complete degenerate alphabet for amino acids (although there
could be — we would just need 22° characters)

We can consider STRUCTURAL and FUNCTIONAL categories instead

52



General Amino Acid Structure

| G
Amino group = /

(the “front”) N

“R group”:
varies

Isoleucine T
NH-

Again, from Wikipedia

Carboxyl group

(the “back”)

53



tructural and functional attributes

Aromatic side chains

i

oA

0 i
N -’JL\ . H,N f-'x\.’__’_\

Glutamate NH, Glutamine NH,

8]

Aliphatic side chains

I A
NH, NH,

Valine Isoleucine
O

0
\WNI[LO_ \!/ Iﬁfo

Arginine NH, Leucine

Alanine

Ifur-containing

http://www.bact.wisc.edu/Microtextbook/images/book_4/chapter_2/2-10.gif



Reduced amino acid alphabets

n=2 » ADEGKNPQRST CFHILMVWY
ADEGNPST CHKORW FILMVY

AGNPST CHWY DEKQR FILMV

AGPST CFWY DEN HKQR ILMV

APST CW DEGN FHY ILMV KOR

AGST CW DEN FY HP ILMV KQR

AST CG DEN FY HP ILV KQR MW

AST CW DE FY GN HQ ILV KR MP This is one of many

AST CW DE FY GN HQ IV KR LM P -

ASTCDEFY GNHQIVKRILMP W possible sets of

ASTCDEFY GHQIVKRLM NP W groupings!

ASTCDEFY GHIVKRLMNPQW

ASTCDEFLGHIVKRMNPQ WY

ASTCDEFGHIVKRLMNPQWY

ATCDEFGHIVKRLMNPQSWY

ATCDEFGHIVKLMNPQRSWY

ACDEFGHIVKLMNPQRSTWY

ACDEFGHIVKLMNPQRSTWY

n=19»

Susko and Roger (2007) PROTEINS: Mol Biol Evol




Correlation representations

*e.g., pseudo-amino acid composition

* Look at global correlations 0. of chemical / structural features
at a series of distances A,

1

A |

0, = ﬁ 2 O[R;, R; ;1)

1 =1

correlation of adjacent

protein length amino acids (A = 1)

Chou (2001) PROTEINS: Structure, Function, and Genetics o6



Example: hydrophobicity
(amino acid aversion to water)

Leucine Aspartic aciD)
Super-hydrophobic Super-hydrophilic

MRLR)  AR,Ry) ARaR) ARLR) MR.Re) AMRaR;) AR.R,)

- - ~
“

-~

‘ﬁ

| s 1
] ~a ]
| |

- -
| 1 "

MAQDQEKEK
74 41

+ . + + o+ + 4+

High average correlation

Chou (2001) PROTEINS: Structure, Function, and Genetics o7



Example: hydrophobicity
(amino acid aversion to water)

Leucine Aspartic aciD)
Super-hydrophobic Super-hydrophilic

MR, Ry) AR R;) AR,

-
“

Ry  A(R,Bs) AR;,Rg) A{RgR;)  A(R;Ry)

- N - -

- .
- | e - 1 "o

Poor average correlation

Chou (2001) PROTEINS: Structure, Function, and Genetics o8
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Structural representations of DNA

» Two ways to think about DNA structure:

Geometric parameters

Atomic coordinates

http://rutchem.rutgers.edu/~xiangjun/3DNA/images/regular_dna.gif
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We can compute the...

Rise(dz) Twist(rz)
Slide(dy) Roll(ry)
Shift(dx) Tilt(rx)

Between consecutive nucleotide pairs in the helix

gibk26.bse.kyutech.ac.jp/jouhou/readout/help.html

61



Static parameters (twist, roll)
- AND -
Dynamic parameters (flexibility/deformability)

e.g., DNA complex with TATA-box binding protein (TBP)

TBP

DNA
(promoter)

62



Proteins tend to have more “interesting” structures
that govern their behaviour, so structural methods
are more frequently applied to proteins than to DNA

63



Secondary
structure

http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureld=1LL9

dll1%a

——— =r—

NDIVHRTITPLIEQQOKIPG sKPY i TAKK(

dl111%a

AL RN

EIKLSDPTTKYWPELTA

dll19%a

RASWVHKTCGATGGFGSYVA

NLKPLDI

64
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Tertiary structure
(e.g., atomic coordinates)

ATOM 3 PRO A 1 63.886 41.846 3.646| 1.00 22.65 C
ATOM 4 o PRO A 1 64.467 41.039 2.948 1.80 22.51 0
ATOM 5 CB PROA 1 61.985 43.079 2.551 1.80 22.54 C
ATOM 6 CG PROA 1 61.974 43.966 1.334 1.80 23.59 C
ATOM 7 CD PROA 1 63.440 44.213 0.951 1.00 24.08 C
ATOM 8 N GLNA 2 63.711 41.737 4.969 1.80 23.06 N
ATOM 9 CA GLN A 2 64.116 40.581 5.732 1.80 20.94 C
ATOM 1 C GLNA 2 63.002 40.196 6.653 1.80 18.99 C
ATOM 11 0 GLNA 2 62.479 41.045 7.339 1.00 21.48 0
ATOM 12 CB GLN A 2 65.410 40.873 6.513 1.80 18.89 C
ATOM 13 C6 GLN A 2 65.904 39.624 7.267 1.00 21.48 C
ATOM 14 CD GLN A 2 67.379 39.737 7.626 1.00 27.58 C
ATOM 15 OET GLN A 2 67.863 39.075 8.566 1.00 30.78 0
ATOM 16 NE2 GLN A 2 68.080 40.643 6.939 1.00 26.63 N
ATOM 177 N PHE A 3 62.612 38.932 6.659 1.00 18.87 N
ATOM 18 CA PHE A 3 61.548 38.503 7.542 1.80 19.11 C
ATOM 19 C PHEA 3 62.096 37.578 8.572 1.00 18.63 C
ATOM 20 0 PHE A 3 62.597 36.517 8.167 1.00 13.98 0
ATOM 21 CB PHE A 3 60.413 37.726 6.820 1.00 16.68 C
ATOM 22 CG PHE A 3 59.665 38.563 5.831 1.00 19.69 C
X y z

Less excruciating options: choose a subset of atoms (e.g., carbon atoms in the backbone)



Summary

There are many different applications of DNA, protein,
and genome representations

No single representation is 1deal for every task

DNA and protein have fundamentally different
structures, and some types of representation make sense
for one but not the other
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